Engineering Mechanics

DYNAMICS

INSTRUCTOR SOLUTIONS MANUAL

Fourteenth Edition
R. C. Hibbeler

12-1.

Starting from rest, a particle moving in a straight line has an acceleration of $a=(2 t-6) \mathrm{m} / \mathrm{s}^{2}$, where t is in seconds. What is the particle's velocity when $t=6 \mathrm{~s}$, and what is its position when $t=11 \mathrm{~s}$?

SOLUTION

$a=2 t-6$
$d v=a d t$
$\int_{0}^{v} d v=\int_{0}^{t}(2 t-6) d t$
$v=t^{2}-6 t$
$d s=v d t$
$\int_{0}^{s} d s=\int_{0}^{t}\left(t^{2}-6 t\right) d t$
$s=\frac{t^{3}}{3}-3 t^{2}$
When $t=6 s$,
$v=0$
When $t=11 \mathrm{~s}$,
$s=80.7 \mathrm{~m}$

Ans.

Ans.

Ans:
$s=80.7 \mathrm{~m}$

12-2.

If a particle has an initial velocity of $v_{0}=12 \mathrm{ft} / \mathrm{s}$ to the right, at $s_{0}=0$, determine its position when $t=10 \mathrm{~s}$, if $a=2 \mathrm{ft} / \mathrm{s}^{2}$ to the left.

SOLUTION

$(\xrightarrow{+}) \quad s=s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2}$

$$
\begin{aligned}
& =0+12(10)+\frac{1}{2}(-2)(10)^{2} \\
& =20 \mathrm{ft}
\end{aligned}
$$

Ans:

$s=20 \mathrm{ft}$

12-3.

A particle travels along a straight line with a velocity $v=\left(12-3 t^{2}\right) \mathrm{m} / \mathrm{s}$, where t is in seconds. When $t=1 \mathrm{~s}$, the particle is located 10 m to the left of the origin. Determine the acceleration when $t=4 \mathrm{~s}$, the displacement from $t=0$ to $t=10 \mathrm{~s}$, and the distance the particle travels during this time period.

SOLUTION

$v=12-3 t^{2}$
$a=\frac{d v}{d t}=-\left.6 t\right|_{t=4}=-24 \mathrm{~m} / \mathrm{s}^{2}$
$\int_{-10}^{s} d s=\int_{1}^{t} v d t=\int_{1}^{t}\left(12-3 t^{2}\right) d t$
$s+10=12 t-t^{3}-11$
$s=12 t-t^{3}-21$
$\left.s\right|_{t=0}=-21$
$\left.s\right|_{t=10}=-901$
$\Delta s=-901-(-21)=-880 \mathrm{~m}$

From Eq. (1):
$v=0$ when $t=2 s$
$\left.s\right|_{t=2}=12(2)-(2)^{3}-21=-5$
$s_{T}=(21-5)+(901-5)=912 \mathrm{~m}$
(1)

Ans.

Ans.

Ans.

Ans:
$a=-24 \mathrm{~m} / \mathrm{s}^{2}$
$\Delta s=-880 \mathrm{~m}$ $s_{T}=912 \mathrm{~m}$

*12-4.

A particle travels along a straight line with a constant acceleration. When $s=4 \mathrm{ft}, v=3 \mathrm{ft} / \mathrm{s}$ and when $s=10 \mathrm{ft}$, $v=8 \mathrm{ft} / \mathrm{s}$. Determine the velocity as a function of position.

SOLUTION

Velocity: To determine the constant acceleration a_{c}, set $s_{0}=4 \mathrm{ft}, v_{0}=3 \mathrm{ft} / \mathrm{s}$, $s=10 \mathrm{ft}$ and $v=8 \mathrm{ft} / \mathrm{s}$ and apply Eq. 12-6.

$$
\left(\begin{array}{rl}
v^{2} & =v_{0}^{2}+2 a_{c}\left(s-s_{0}\right) \\
8^{2}= & 3^{2}+2 a_{c}(10-4) \\
& a_{c}=4.583 \mathrm{ft} / \mathrm{s}^{2}
\end{array}\right.
$$

Using the result $a_{c}=4.583 \mathrm{ft} / \mathrm{s}^{2}$, the velocity function can be obtained by applying Eq. 12-6.

$$
\left(\begin{array}{rl}
\mathrm{t}^{2} & =v_{0}^{2}+2 a_{c}\left(s-s_{0}\right) \\
v^{2} & =3^{2}+2(4.583)(s-4) \\
v & =(\sqrt{9.17 \mathrm{~s}-27.7}) \mathrm{ft} / \mathrm{s}
\end{array}\right.
$$

Ans.

Ans:

$v=(\sqrt{9.17 \mathrm{~s}-27.7}) \mathrm{ft} / \mathrm{s}$

12-5.

The velocity of a particle traveling in a straight line is given by $v=\left(6 t-3 t^{2}\right) \mathrm{m} / \mathrm{s}$, where t is in seconds. If $s=0$ when $t=0$, determine the particle's deceleration and position when $t=3 \mathrm{~s}$. How far has the particle traveled during the 3 -s time interval, and what is its average speed?

SOLUTION

$v=6 t-3 t^{2}$
$a=\frac{d v}{d t}=6-6 t$
At $t=3 \mathrm{~s}$
$a=-12 \mathrm{~m} / \mathrm{s}^{2}$
$d s=v d t$
$\int_{0}^{s} d s=\int_{0}^{t}\left(6 t-3 t^{2}\right) d t$
$s=3 t^{2}-t^{3}$
At $t=3 \mathrm{~s}$
$s=0$
Since $v=0=6 t-3 t^{2}$, when $t=0$ and $t=2 \mathrm{~s}$.
when $t=2 \mathrm{~s}, \quad s=3(2)^{2}-(2)^{3}=4 \mathrm{~m}$
$s_{T}=4+4=8 \mathrm{~m}$
$\left(v_{s p}\right)_{\text {avg }}=\frac{s_{T}}{t}=\frac{8}{3}=2.67 \mathrm{~m} / \mathrm{s}$

Ans.

Ans.

Ans.
Ans.

Ans:
$s_{T}=8 \mathrm{~m}$
$v_{\mathrm{avg}}=2.67 \mathrm{~m} / \mathrm{s}$

12-6.

The position of a particle along a straight line is given by $s=\left(1.5 t^{3}-13.5 t^{2}+22.5 t\right) \mathrm{ft}$, where t is in seconds. Determine the position of the particle when $t=6 \mathrm{~s}$ and the total distance it travels during the 6 -s time interval. Hint: Plot the path to determine the total distance traveled.

SOLUTION

Position: The position of the particle when $t=6 \mathrm{~s}$ is
$\left.s\right|_{t=6 s}=1.5\left(6^{3}\right)-13.5\left(6^{2}\right)+22.5(6)=-27.0 \mathrm{ft}$ Ans.
Total DistanceTraveled: The velocity of the particle can be determined by applying Eq. 12-1.

$$
v=\frac{d s}{d t}=4.50 t^{2}-27.0 t+22.5
$$

The times when the particle stops are

$$
4.50 t^{2}-27.0 t+22.5=0
$$

$$
t=1 \mathrm{~s} \quad \text { and } \quad t=5 \mathrm{~s}
$$

The position of the particle at $t=0 \mathrm{~s}, 1 \mathrm{~s}$ and 5 s are
$\left.s\right|_{t=0 \mathrm{~s}}=1.5\left(0^{3}\right)-13.5\left(0^{2}\right)+22.5(0)=0$
$s_{t=1 \mathrm{~s}}=1.5\left(1^{3}\right)-13.5\left(1^{2}\right)+22.5(1)=10.5 \mathrm{ft}$
$s_{t=5 \mathrm{~s}}=1.5\left(5^{3}\right)-13.5\left(5^{2}\right)+22.5(5)=-37.5 \mathrm{ft}$

From the particle's path, the total distance is

$$
s_{\mathrm{tot}}=10.5+48.0+10.5=69.0 \mathrm{ft}
$$

Ans.

12-7.

A particle moves along a straight line such that its position is defined by $s=\left(t^{2}-6 t+5\right) \mathrm{m}$. Determine the average velocity, the average speed, and the acceleration of the particle when $t=6 \mathrm{~s}$.

SOLUTION

$s=t^{2}-6 t+5$
$v=\frac{d s}{d t}=2 t-6$
$a=\frac{d v}{d t}=2$
$v=0$ when $t=3$
$\left.s\right|_{t=0}=5$
$\left.s\right|_{t=3}=-4$
$\left.s\right|_{t=6}=5$
$v_{\mathrm{avg}}=\frac{\Delta s}{\Delta t}=\frac{0}{6}=0$
$\left(v_{s p}\right)_{\text {avg }}=\frac{s_{T}}{\Delta t}=\frac{9+9}{6}=3 \mathrm{~m} / \mathrm{s}$
$\left.a\right|_{t=6}=2 \mathrm{~m} / \mathrm{s}^{2}$

Ans.

Ans.

Ans.

Ans:
$v_{\text {avg }}=0$
$\left(v_{\mathrm{sp}}\right)_{\mathrm{avg}}=3 \mathrm{~m} / \mathrm{s}$
$\left.a\right|_{t=6 \mathrm{~s}}=2 \mathrm{~m} / \mathrm{s}^{2}$

*12-8.

A particle is moving along a straight line such that its position is defined by $s=\left(10 t^{2}+20\right) \mathrm{mm}$, where t is in seconds. Determine (a) the displacement of the particle during the time interval from $t=1 \mathrm{~s}$ to $t=5 \mathrm{~s}$, (b) the average velocity of the particle during this time interval, and (c) the acceleration when $t=1 \mathrm{~s}$.

SOLUTION

$s=10 t^{2}+20$
(a) $\left.s\right|_{1 s}=10(1)^{2}+20=30 \mathrm{~mm}$
$\left.s\right|_{5 s}=10(5)^{2}+20=270 \mathrm{~mm}$
$\Delta s=270-30=240 \mathrm{~mm}$
(b) $\Delta t=5-1=4 \mathrm{~s}$
$v_{\text {avg }}=\frac{\Delta s}{\Delta t}=\frac{240}{4}=60 \mathrm{~mm} / \mathrm{s}$
(c) $a=\frac{d^{2} s}{d t^{2}}=20 \mathrm{~mm} / \mathrm{s}^{2} \quad($ for all $t)$

Ans.

Ans.

Ans.

Ans:
$\Delta s=240 \mathrm{~mm}$
$v_{\text {avg }}=60 \mathrm{~mm} / \mathrm{s}$
$a=20 \mathrm{~mm} / \mathrm{s}^{2}$

12-9.

The acceleration of a particle as it moves along a straight line is given by $a=(2 t-1) \mathrm{m} / \mathrm{s}^{2}$, where t is in seconds. If $s=1 \mathrm{~m}$ and $v=2 \mathrm{~m} / \mathrm{s}$ when $t=0$, determine the particle's velocity and position when $t=6 \mathrm{~s}$. Also, determine the total distance the particle travels during this time period.

SOLUTION

$a=2 t-1$
$d v=a d t$
$\int_{2}^{v} d v=\int_{0}^{t}(2 t-1) d t$
$v=t^{2}-t+2$
$d x=v d t$
$\int_{t}^{s} d s=\int_{0}^{t}\left(t^{2}-t+2\right) d t$
$s=\frac{1}{3} t^{3}-\frac{1}{2} t^{2}+2 t+1$
When $t=6 \mathrm{~s}$
$v=32 \mathrm{~m} / \mathrm{s}$
$s=67 \mathrm{~m}$
Since $v \neq 0$ for $0 \leq t \leq 6 \mathrm{~s}$, then
$d=67-1=66 \mathrm{~m}$

Ans.
Ans.

Ans.

Ans:
$v=32 \mathrm{~m} / \mathrm{s}$
$s=67 \mathrm{~m}$
$d=66 \mathrm{~m}$

12-10.

A particle moves along a straight line with an acceleration of $a=5 /\left(3 s^{1 / 3}+s^{5 / 2}\right) \mathrm{m} / \mathrm{s}^{2}$, where s is in meters. Determine the particle's velocity when $s=2 \mathrm{~m}$, if it starts from rest when $s=1 \mathrm{~m}$. Use a numerical method to evaluate the integral.

SOLUTION

$a=\frac{5}{\left(3 s^{\frac{1}{3}}+s^{\frac{5}{2}}\right)}$
$a d s=v d v$
$\int_{1}^{2} \frac{5 d s}{\left(3 s^{\frac{1}{3}}+s^{\frac{5}{2}}\right)}=\int_{0}^{v} v d v$
$0.8351=\frac{1}{2} v^{2}$
$v=1.29 \mathrm{~m} / \mathrm{s}$
Ans.

Ans:

$v=1.29 \mathrm{~m} / \mathrm{s}$

12-11.

A particle travels along a straight-line path such that in 4 s it moves from an initial position $s_{A}=-8 \mathrm{~m}$ to a position $s_{B}=+3 \mathrm{~m}$. Then in another 5 s it moves from s_{B} to $s_{C}=-6 \mathrm{~m}$. Determine the particle's average velocity and average speed during the 9 -s time interval.

SOLUTION

Average Velocity: The displacement from A to C is $\Delta s=s_{C}-S_{\mathrm{A}}=-6-(-8)$ $=2 \mathrm{~m}$.

$$
v_{\mathrm{avg}}=\frac{\Delta s}{\Delta t}=\frac{2}{4+5}=0.222 \mathrm{~m} / \mathrm{s}
$$

Ans.

Average Speed: The distances traveled from A to B and B to C are $s_{A \rightarrow B}=8+3$ $=11.0 \mathrm{~m}$ and $s_{B \rightarrow C}=3+6=9.00 \mathrm{~m}$, respectively. Then, the total distance traveled
 is $s_{\text {Tot }}=s_{A \rightarrow B}+s_{B \rightarrow C}=11.0+9.00=20.0 \mathrm{~m}$.

$$
\left(v_{s p}\right)_{\mathrm{avg}}=\frac{s_{\mathrm{Tot}}}{\Delta t}=\frac{20.0}{4+5}=2.22 \mathrm{~m} / \mathrm{s}
$$

Ans.

> Ans:
> $v_{\mathrm{avg}}=0.222 \mathrm{~m} / \mathrm{s}$
> $\left(v_{\mathrm{sp}}\right)_{\mathrm{avg}}=2.22 \mathrm{~m} / \mathrm{s}$

*12-12.

Traveling with an initial speed of $70 \mathrm{~km} / \mathrm{h}$, a car accelerates at $6000 \mathrm{~km} / \mathrm{h}^{2}$ along a straight road. How long will it take to reach a speed of $120 \mathrm{~km} / \mathrm{h}$? Also, through what distance does the car travel during this time?

SOLUTION

$v=v_{1}+a_{c} t$
$120=70+6000(t)$
$t=8.33\left(10^{-3}\right) \mathrm{hr}=30 \mathrm{~s}$
$v^{2}=v_{1}^{2}+2 a_{c}\left(s-s_{1}\right)$
$(120)^{2}=70^{2}+2(6000)(s-0)$
$s=0.792 \mathrm{~km}=792 \mathrm{~m}$

Ans.

Ans.

Ans:

$t=30 \mathrm{~s}$
$s=792 \mathrm{~m}$

12-13.

Tests reveal that a normal driver takes about 0.75 s before he or she can react to a situation to avoid a collision. It takes about 3 s for a driver having 0.1% alcohol in his system to do the same. If such drivers are traveling on a straight road at $30 \mathrm{mph}(44 \mathrm{ft} / \mathrm{s})$ and their cars can decelerate at $2 \mathrm{ft} / \mathrm{s}^{2}$, determine the shortest stopping distance d for each from the moment they see the pedestrians. Moral: If you must drink, please don't drive!

SOLUTION

Stopping Distance: For normal driver, the car moves a distance of $d^{\prime}=v t=44(0.75)=33.0 \mathrm{ft}$ before he or she reacts and decelerates the car. The stopping distance can be obtained using Eq. 12-6 with $s_{0}=d^{\prime}=33.0 \mathrm{ft}$ and $v=0$.

$$
\begin{gathered}
\left(\begin{array}{c}
v^{2}=v_{0}^{2}+2 a_{c}\left(s-s_{0}\right) \\
0^{2}=44^{2}+2(-2)(d-33.0) \\
d=517 \mathrm{ft}
\end{array}\right.
\end{gathered}
$$

Ans.
For a drunk driver, the car moves a distance of $d^{\prime}=v t=44(3)=132 \mathrm{ft}$ before he or she reacts and decelerates the car. The stopping distance can be obtained using Eq. 12-6 with $s_{0}=d^{\prime}=132 \mathrm{ft}$ and $v=0$.

$$
\begin{gathered}
\left(\begin{array}{c}
v^{2}=v_{0}^{2} \\
0^{2}=44^{2}+2(-2)(d-132) \\
d=616 \mathrm{ft}
\end{array}\right.
\end{gathered}
$$

Ans.

Ans:

Normal: $d=517 \mathrm{ft}$ drunk: $d=616 \mathrm{ft}$

12-14.

The position of a particle along a straight-line path is defined by $s=\left(t^{3}-6 t^{2}-15 t+7\right) \mathrm{ft}$, where t is in seconds. Determine the total distance traveled when $t=10 \mathrm{~s}$. What are the particle's average velocity, average speed, and the instantaneous velocity and acceleration at this time?

SOLUTION

$s=t^{3}-6 t^{2}-15 t+7$
$v=\frac{d s}{d t}=3 t^{2}-12 t-15$
When $t=10 \mathrm{~s}$,
$v=165 \mathrm{ft} / \mathrm{s}$
$a=\frac{d v}{d t}=6 t-12$
When $t=10 \mathrm{~s}$,
$a=48 \mathrm{ft} / \mathrm{s}^{2}$
When $v=0$,
$0=3 t^{2}-12 t-15$
The positive root is
$t=5 \mathrm{~s}$
When $t=0, \quad s=7 \mathrm{ft}$
When $t=5 \mathrm{~s}, \quad s=-93 \mathrm{ft}$
When $t=10 \mathrm{~s}, \quad s=257 \mathrm{ft}$
Total distance traveled
$s_{T}=7+93+93+257=450 \mathrm{ft}$
$v_{\text {avg }}=\frac{\Delta s}{\Delta t}=\frac{257-7}{10-0}=25.0 \mathrm{ft} / \mathrm{s}$
$\left(v_{s p}\right)_{\text {avg }}=\frac{s_{T}}{\Delta t}=\frac{450}{10}=45.0 \mathrm{ft} / \mathrm{s}$

Ans.

Ans.

Ans.

Ans.

Ans.

Ans:
$v=165 \mathrm{ft} / \mathrm{s}$
$a=48 \mathrm{ft} / \mathrm{s}^{2}$
$s_{T}=450 \mathrm{ft}$
$v_{\text {avg }}=25.0 \mathrm{ft} / \mathrm{s}$
$\left(v_{\mathrm{sp}}\right)_{\mathrm{avg}}=45.0 \mathrm{ft} / \mathrm{s}$

12-15.

A particle is moving with a velocity of v_{0} when $s=0$ and $t=0$. If it is subjected to a deceleration of $a=-k v^{3}$, where k is a constant, determine its velocity and position as functions of time.

SOLUTION

$a=\frac{d \nu}{d t}=-\mathrm{k} \nu^{3}$
$\int_{\nu 0}^{\nu} \nu^{-3} d \nu=\int_{0}^{t}-k d t$
$-\frac{1}{2}\left(\nu^{-2}-\nu_{0}^{-2}\right)=-k t$
$\nu=\left(2 k t+\left(\frac{1}{\nu_{0}^{2}}\right)\right)^{-\frac{1}{2}}$
$d s=\nu d t$
$\int_{0}^{s} d s=\int_{0}^{t} \frac{d t}{\left(2 k t+\left(\frac{1}{v_{0}^{2}}\right)\right)^{\frac{1}{2}}}$
$s=\left.\frac{2\left(2 k t+\left(\frac{1}{\nu_{0}^{2}}\right)\right)^{\frac{1}{2}}}{2 k}\right|_{0} ^{t}$
$s=\frac{1}{k}\left[\left(2 k t+\left(\frac{1}{\nu_{0}^{2}}\right)\right)^{\frac{1}{2}}-\frac{1}{\nu_{0}}\right]$

Ans.

Ans.

Ans:
$v=\left(2 k t+\frac{1}{v_{0}^{2}}\right)^{-1 / 2}$
$s=\frac{1}{k}\left[\left(2 k t+\frac{1}{v_{0}^{2}}\right)^{1 / 2}-\frac{1}{v_{0}}\right]$

*12-16.

A particle is moving along a straight line with an initial velocity of $6 \mathrm{~m} / \mathrm{s}$ when it is subjected to a deceleration of $a=\left(-1.5 v^{1 / 2}\right) \mathrm{m} / \mathrm{s}^{2}$, where v is in m / s. Determine how far it travels before it stops. How much time does this take?

SOLUTION

Distance Traveled: The distance traveled by the particle can be determined by applying Eq. 12-3.

$$
\begin{gathered}
d s=\frac{v d v}{a} \\
\int_{0}^{s} d s=\int_{6 \mathrm{~m} / \mathrm{s}}^{v} \frac{v}{-1.5 v^{\frac{1}{2}}} d v \\
s=\int_{6 \mathrm{~m} / \mathrm{s}}^{v}-0.6667 v^{\frac{1}{2}} d v \\
=\left(-0.4444 v^{\frac{3}{2}}+6.532\right) \mathrm{m}
\end{gathered}
$$

When $v=0, \quad s=-0.4444\left(0^{\frac{3}{2}}\right)+6.532=6.53 \mathrm{~m}$
Ans.

Time: The time required for the particle to stop can be determined by applying Eq. 12-2.

$$
\begin{gathered}
d t=\frac{d v}{a} \\
\int_{0}^{t} d t=-\int_{6 \mathrm{~m} / \mathrm{s}}^{v} \frac{d v}{1.5 v^{\frac{1}{2}}} \\
t=-\left.1.333\left(v^{\frac{1}{2}}\right)\right|_{6 \mathrm{~m} / \mathrm{s}} ^{v}=\left(3.266-1.333 v^{\frac{1}{2}}\right) \mathrm{s}
\end{gathered}
$$

When $v=0$,

$$
t=3.266-1.333\left(0^{\frac{1}{2}}\right)=3.27 \mathrm{~s}
$$

Ans.

12-17.

Car B is traveling a distance d ahead of car A. Both cars are traveling at $60 \mathrm{ft} / \mathrm{s}$ when the driver of B suddenly applies the brakes, causing his car to decelerate at $12 \mathrm{ft} / \mathrm{s}^{2}$. It takes the driver of car $A 0.75 \mathrm{~s}$ to react (this is the normal reaction time for drivers). When he applies his brakes, he decelerates at $15 \mathrm{ft} / \mathrm{s}^{2}$. Determine the minimum distance d be tween the cars so as to avoid a collision.

SOLUTION

For B :

$$
\begin{array}{ll}
(\xrightarrow{\rightarrow}) & v=v_{0}+a_{c} t \\
& v_{B}=60-12 t
\end{array}
$$

$$
(\stackrel{丸}{\rightrightarrows}) \quad s=s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2}
$$

$$
s_{B}=d+60 t-\frac{1}{2}(12) t^{2}
$$

For A :
$(\xrightarrow{\text { 土 }}) \quad v=v_{0}+a_{c} t$
$v_{A}=60-15(t-0.75), \quad[t>0.75]$
$(\xrightarrow{\rightarrow}) \quad s=s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2}$

$$
\begin{equation*}
s_{A}=60(0.75)+60(t-0.75)-\frac{1}{2}(15)(t-0.75)^{2}, \quad[t>0.74] \tag{2}
\end{equation*}
$$

Require $v_{A}=v_{B}$ the moment of closest approach.
$60-12 t=60-15(t-0.75)$
$t=3.75 \mathrm{~s}$

Worst case without collision would occur when $s_{A}=s_{B}$.
At $t=3.75 \mathrm{~s}$, from Eqs. (1) and (2):
$60(0.75)+60(3.75-0.75)-7.5(3.75-0.75)^{2}=d+60(3.75)-6(3.75)^{2}$
$157.5=d+140.625$
$d=16.9 \mathrm{ft}$
Ans.

Ans:
$d=16.9 \mathrm{ft}$

12-18.

The acceleration of a rocket traveling upward is given by $a=(6+0.02 s) \mathrm{m} / \mathrm{s}^{2}$, where s is in meters. Determine the time needed for the rocket to reach an altitude of $s=100 \mathrm{~m}$. Initially, $v=0$ and $s=0$ when $t=0$.

SOLUTION

$a d s=\nu d \nu$
$\int_{0}^{s}(6+0.02 s) d s=\int_{0}^{\nu} \nu d \nu$
$6 s+0.01 s^{2}=\frac{1}{2} \nu^{2}$
$\nu=\sqrt{12 s+0.02 s^{2}}$
$d s=\nu d t$
$\int_{0}^{100} \frac{d s}{\sqrt{12 s+0.02 s^{2}}}=\int_{0}^{t} d t$
$\frac{1}{\sqrt{0.02}} \ln \left[\sqrt{12 s+0.02 s^{2}}+\mathrm{s} \sqrt{0.02}+\frac{12}{2 \sqrt{0.02}}\right]_{0}^{100}=t$
$t=5.62 \mathrm{~s}$

Ans.

Ans:
$t=5.62 \mathrm{~s}$

12-19.

A train starts from rest at station A and accelerates at $0.5 \mathrm{~m} / \mathrm{s}^{2}$ for 60 s . Afterwards it travels with a constant velocity for 15 min . It then decelerates at $1 \mathrm{~m} / \mathrm{s}^{2}$ until it is brought to rest at station B. Determine the distance between the stations.

SOLUTION

Kinematics: For stage (1) motion, $v_{0}=0, s_{0}=0, t=60 \mathrm{~s}$, and $a_{c}=0.5 \mathrm{~m} / \mathrm{s}^{2}$. Thus,

$$
\begin{aligned}
& (\stackrel{+}{\rightarrow}) \\
& \left(\begin{array}{l}
s \\
s_{1}
\end{array}=0+0+s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2}\right. \\
& (\stackrel{+}{\rightarrow}) \quad v=v_{0}+a_{c} t \\
& \\
& v_{1}=0+0.5(60)=30 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

For stage (2) motion, $v_{0}=30 \mathrm{~m} / \mathrm{s}, s_{0}=900 \mathrm{~m}, a_{c}=0$ and $t=15(60)=900 \mathrm{~s}$. Thus,

$$
\begin{aligned}
& (\stackrel{+}{\rightarrow}) \quad s=s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2} \\
& s_{2}=900+30(900)+0=27900 \mathrm{~m}
\end{aligned}
$$

For stage (3) motion, $v_{0}=30 \mathrm{~m} / \mathrm{s}, v=0, s_{0}=27900 \mathrm{~m}$ and $a_{c}=-1 \mathrm{~m} / \mathrm{s}^{2}$. Thus,

$$
\begin{aligned}
& (\stackrel{+}{\rightarrow}) \\
& \\
& \stackrel{v}{\rightarrow}=v_{0}+a_{c} t \\
& 0 \\
& \stackrel{+}{\rightarrow}=30+(-1) t \\
& t
\end{aligned} \quad \begin{aligned}
s & =s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2} \\
& \\
s_{3} & =27900+30(30)+\frac{1}{2}(-1)\left(30^{2}\right) \\
& =28350 \mathrm{~m}=28.4 \mathrm{~km}
\end{aligned}
$$

Ans.

Ans:

$s=28.4 \mathrm{~km}$

*12-20.

The velocity of a particle traveling along a straight line is $v=\left(3 t^{2}-6 t\right) \mathrm{ft} / \mathrm{s}$, where t is in seconds. If $s=4 \mathrm{ft}$ when $t=0$, determine the position of the particle when $t=4 \mathrm{~s}$. What is the total distance traveled during the time interval $t=0$ to $t=4 \mathrm{~s}$? Also, what is the acceleration when $t=2 \mathrm{~s}$?

SOLUTION

Position: The position of the particle can be determined by integrating the kinematic equation $d s=v d t$ using the initial condition $s=4 \mathrm{ft}$ when $t=0 \mathrm{~s}$. Thus,

$$
\begin{gathered}
(\stackrel{+}{\rightarrow}) \\
d s=v d t \\
\int_{4 \mathrm{ft}}^{s} d s=\int_{0}^{t}\left(3 t^{2}-6 t\right) d t \\
\left.s\right|_{4 \mathrm{ft}} ^{s}=\left.\left(t^{3}-3 t^{2}\right)\right|_{0} ^{t} \\
s=\left(t^{3}-3 t^{2}+4\right) \mathrm{ft}
\end{gathered}
$$

When $t=4 \mathrm{~s}$,

$$
\left.s\right|_{4 \mathrm{~s}}=4^{3}-3\left(4^{2}\right)+4=20 \mathrm{ft}
$$

Ans.
The velocity of the particle changes direction at the instant when it is momentarily brought to rest. Thus,

$$
\begin{aligned}
& v=3 t^{2}-6 t=0 \\
& t(3 t-6)=0 \\
& t=0 \text { and } t=2 \mathrm{~s}
\end{aligned}
$$

The position of the particle at $t=0$ and 2 s is

$$
\begin{aligned}
& \left.s\right|_{0 \mathrm{~s}}=0-3\left(0^{2}\right)+4=4 \mathrm{ft} \\
& \left.s\right|_{2 \mathrm{~s}}=2^{3}-3\left(2^{2}\right)+4=0
\end{aligned}
$$

Using the above result, the path of the particle shown in Fig. a is plotted. From this figure,

$$
s_{\mathrm{Tot}}=4+20=24 \mathrm{ft}
$$

Ans.

Acceleration:

$$
\begin{aligned}
(\stackrel{+}{\rightarrow}) \quad a & =\frac{d v}{d t}=\frac{d}{d t}\left(3 t^{2}-6 t\right) \\
a & =(6 t-6) \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

When $t=2 \mathrm{~s}$,

$$
\left.a\right|_{t=2 \mathrm{~s}}=6(2)-6=6 \mathrm{ft} / \mathrm{s}^{2} \rightarrow
$$

Ans.

Ans:
$s_{\text {Tot }}=24 \mathrm{ft}$
$\left.a\right|_{t=2 \mathrm{~s}}=6 \mathrm{ft} / \mathrm{s}^{2} \rightarrow$

12-21.

A freight train travels at $v=60\left(1-e^{-t}\right) \mathrm{ft} / \mathrm{s}$, where t is the elapsed time in seconds. Determine the distance traveled in three seconds, and the acceleration at this time.

SOLUTION

$$
\begin{aligned}
& v=60\left(1-e^{-t}\right) \\
& \int_{0}^{s} d s=\int v d t=\int_{0}^{3} 60\left(1-e^{-t}\right) d t \\
& s=\left.60\left(t+e^{-t}\right)\right|_{0} ^{3} \\
& s=123 \mathrm{ft} \\
& a=\frac{d v}{d t}=60\left(e^{-t}\right)
\end{aligned}
$$

$$
\mathrm{At} t=3 \mathrm{~s}
$$

$$
a=60 e^{-3}=2.99 \mathrm{ft} / \mathrm{s}^{2}
$$

Ans.

Ans.

Ans:
$s=123 \mathrm{ft}$
$a=2.99 \mathrm{ft} / \mathrm{s}^{2}$

12-22.

A sandbag is dropped from a balloon which is ascending vertically at a constant speed of $6 \mathrm{~m} / \mathrm{s}$. If the bag is released with the same upward velocity of $6 \mathrm{~m} / \mathrm{s}$ when $t=0$ and hits the ground when $t=8 \mathrm{~s}$, determine the speed of the bag as it hits the ground and the altitude of the balloon at this instant.

SOLUTION

$$
\begin{aligned}
(+\downarrow) \quad s & =s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2} \\
h & =0+(-6)(8)+\frac{1}{2}(9.81)(8)^{2} \\
& =265.92 \mathrm{~m}
\end{aligned}
$$

During $t=8 \mathrm{~s}$, the balloon rises

$$
h^{\prime}=v t=6(8)=48 \mathrm{~m}
$$

Altitude $=h+h^{\prime}=265.92+48=314 \mathrm{~m}$

$$
\begin{aligned}
(+\downarrow) \quad v & =v_{0}+a_{c} t \\
v & =-6+9.81(8)=72.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Ans.

Ans.

Ans:

$h=314 \mathrm{~m}$
$v=72.5 \mathrm{~m} / \mathrm{s}$

12-23.

A particle is moving along a straight line such that its acceleration is defined as $a=(-2 v) \mathrm{m} / \mathrm{s}^{2}$, where v is in meters per second. If $v=20 \mathrm{~m} / \mathrm{s}$ when $s=0$ and $t=0$, determine the particle's position, velocity, and acceleration as functions of time.

SOLUTION

$a=-2 v$
$\frac{d v}{d t}=-2 v$
$\int_{20}^{v} \frac{d v}{v}=\int_{0}^{t}-2 d t$
$\ln \frac{v}{20}=-2 t$
$v=\left(20 e^{-2 t}\right) \mathrm{m} / \mathrm{s}$
$a=\frac{d v}{d t}=\left(-40 e^{-2 t}\right) \mathrm{m} / \mathrm{s}^{2}$
$\int_{0}^{s} d s=v d t=\int_{0}^{t}\left(20 e^{-2 t}\right) d t$
$s=-\left.10 e^{-2 t}\right|_{0} ^{t}=-10\left(e^{-2 t}-1\right)$
$s=10\left(1-e^{-2 t}\right) \mathrm{m}$

Ans.

Ans.

Ans.

Ans:
$v=\left(20 e^{-2 t}\right) \mathrm{m} / \mathrm{s}$
$a=\left(-40 e^{-2 t}\right) \mathrm{m} / \mathrm{s}^{2}$
$s=10\left(1-e^{-2 t}\right) \mathrm{m}$

*12-24.

The acceleration of a particle traveling along a straight line is $a=\frac{1}{4} s^{1 / 2} \mathrm{~m} / \mathrm{s}^{2}$, where s is in meters. If $v=0, s=1 \mathrm{~m}$ when $t=0$, determine the particle's velocity at $s=2 \mathrm{~m}$.

SOLUTION

Velocity:

$$
\begin{aligned}
(\stackrel{+}{\rightarrow}) \quad \int_{0}^{v} v d v & =a d s \\
\left.\frac{v^{2}}{2}\right|_{0} ^{v} & =\left.\frac{1}{6} s^{3 / 2}\right|_{1} ^{s} \frac{1}{4} s^{1 / 2} d s \\
v & =\frac{1}{\sqrt{3}}\left(s^{3 / 2}-1\right)^{1 / 2} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

When $s=2 \mathrm{~m}, v=0.781 \mathrm{~m} / \mathrm{s}$.

Ans.

Ans:
$v=0.781 \mathrm{~m} / \mathrm{s}$

12-25.

If the effects of atmospheric resistance are accounted for, a falling body has an acceleration defined by the equation $a=9.81\left[1-v^{2}\left(10^{-4}\right)\right] \mathrm{m} / \mathrm{s}^{2}$, where v is in m / s and the positive direction is downward. If the body is released from rest at a very high altitude, determine (a) the velocity when $t=5 \mathrm{~s}$, and (b) the body's terminal or maximum attainable velocity (as $t \rightarrow \infty$).

SOLUTION

Velocity: The velocity of the particle can be related to the time by applying Eq. 12-2.

$$
(+\downarrow) \quad d t=\frac{d v}{a}
$$

$$
\begin{gather*}
\int_{0}^{t} d t=\int_{0}^{v} \frac{d v}{9.81\left[1-(0.01 v)^{2}\right]} \\
t=\frac{1}{9.81}\left[\int_{0}^{v} \frac{d v}{2(1+0.01 v)}+\int_{0}^{v} \frac{d v}{2(1-0.01 v)}\right] \\
9.81 t=50 \ln \left(\frac{1+0.01 v}{1-0.01 v}\right) \\
v=\frac{100\left(e^{0.1962 t}-1\right)}{e^{0.1962 t}+1} \tag{1}
\end{gather*}
$$

a) When $t=5 \mathrm{~s}$, then, from Eq. (1)

$$
v=\frac{100\left[e^{0.1962(5)}-1\right]}{e^{0.1962(5)}+1}=45.5 \mathrm{~m} / \mathrm{s}
$$

Ans.
b) If $t \rightarrow \infty, \frac{e^{0.1962 t}-1}{e^{0.1962 t}+1} \rightarrow 1$. Then, from Eq. (1)

$$
v_{\max }=100 \mathrm{~m} / \mathrm{s}
$$

Ans.

Ans:
(a) $v=45.5 \mathrm{~m} / \mathrm{s}$
(b) $v_{\text {max }}=100 \mathrm{~m} / \mathrm{s}$

12-26.

The acceleration of a particle along a straight line is defined by $a=(2 t-9) \mathrm{m} / \mathrm{s}^{2}$, where t is in seconds. At $t=0$, $s=1 \mathrm{~m}$ and $v=10 \mathrm{~m} / \mathrm{s}$. When $t=9 \mathrm{~s}$, determine (a) the particle's position, (b) the total distance traveled, and (c) the velocity.

SOLUTION

$a=2 t-9$
$\int_{10}^{v} d v=\int_{0}^{t}(2 t-9) d t$
$v-10=t^{2}-9 t$
$v=t^{2}-9 t+10$
$\int_{1}^{s} d s=\int_{0}^{t}\left(t^{2}-9 t+10\right) d t$
$s-1=\frac{1}{3} t^{3}-4.5 t^{2}+10 t$
$s=\frac{1}{3} t^{3}-4.5 t^{2}+10 t+1$
Note when $v=t^{2}-9 t+10=0$:

$$
t=1.298 \mathrm{~s} \text { and } t=7.701 \mathrm{~s}
$$

When $t=1.298 \mathrm{~s}, \quad s=7.13 \mathrm{~m}$
When $t=7.701 \mathrm{~s}, \quad s=-36.63 \mathrm{~m}$

When $t=9 \mathrm{~s}, \quad s=-30.50 \mathrm{~m}$
(a) $s=-30.5 \mathrm{~m}$
(b) $\quad s_{T o t}=(7.13-1)+7.13+36.63+(36.63-30.50)$
$s_{\text {Tot }}=56.0 \mathrm{~m}$
(c) $\quad v=10 \mathrm{~m} / \mathrm{s}$

Ans.

Ans.
Ans.

Ans:
(a) $s=-30.5 \mathrm{~m}$
(b) $s_{\text {Tot }}=56.0 \mathrm{~m}$
(c) $v=10 \mathrm{~m} / \mathrm{s}$

12-27.

When a particle falls through the air, its initial acceleration $a=g$ diminishes until it is zero, and thereafter it falls at a constant or terminal velocity v_{f}. If this variation of the acceleration can be expressed as $a=\left(g / v_{f}^{2}\right)\left(v^{2}{ }_{f}-v^{2}\right)$, determine the time needed for the velocity to become $v=v_{f} / 2$. Initially the particle falls from rest.

SOLUTION

$\frac{d v}{d t}=a=\left(\frac{g}{v_{f}^{2}}\right)\left(v_{f}^{2}-v^{2}\right)$
$\int_{0}^{v} \frac{d v}{v_{f}^{2}-v^{2^{2}}}=\frac{g}{v_{f}^{2}} \int_{0}^{t} d t$
$\left.\frac{1}{2 v_{f}} \ln \left(\frac{v_{f}+v}{v_{f}-v}\right)\right|_{0} ^{v}=\frac{g}{v_{f}^{2}} t$
$t=\frac{v_{f}}{2 g} \ln \left(\frac{v_{f}+v}{v_{f}-v}\right)$
$t=\frac{v_{f}}{2 g} \ln \left(\frac{v_{f}+v_{f} / 2}{v_{f}-v_{f} / 2}\right)$
$t=0.549\left(\frac{v_{f}}{g}\right)$

Ans.

Ans:
$t=0.549\left(\frac{v_{f}}{g}\right)$

*12-28.

Two particles A and B start from rest at the origin $s=0$ and move along a straight line such that $a_{A}=(6 t-3) \mathrm{ft} / \mathrm{s}^{2}$ and $a_{B}=\left(12 t^{2}-8\right) \mathrm{ft} / \mathrm{s}^{2}$, where t is in seconds. Determine the distance between them when $t=4 \mathrm{~s}$ and the total distance each has traveled in $t=4 \mathrm{~s}$.

SOLUTION

Velocity: The velocity of particles A and B can be determined using Eq. 12-2.

$$
\begin{aligned}
d v_{A} & =a_{A} d t \\
\int_{0}^{v_{A}} d v_{A} & =\int_{0}^{t}(6 t-3) d t \\
v_{A} & =3 t^{2}-3 t \\
d v_{B} & =a_{B} d t \\
\int_{0}^{v_{B}} d v_{B} & =\int_{0}^{t}\left(12 t^{2}-8\right) d t \\
v_{B} & =4 t^{3}-8 t
\end{aligned}
$$

The times when particle A stops are
$3 t^{2}-3 t=0 \quad t=0 \mathrm{~s}$ and $=1 \mathrm{~s}$

The times when particle B stops are
$4 t^{3}-8 t=0 \quad t=0 \mathrm{~s}$ and $t=\sqrt{2} \mathrm{~s}$
Position:The position of particles A and B can be determined using Eq. 12-1.

$$
\begin{aligned}
d s_{A} & =v_{A} d t \\
\int_{0}^{s_{A}} d s_{A} & =\int_{0}^{t}\left(3 t^{2}-3 t\right) d t \\
s_{A} & =t^{3}-\frac{3}{2} t^{2} \\
d s_{B} & =v_{B} d t \\
\int_{0}^{s_{B}} d s_{B} & =\int_{0}^{t}\left(4 t^{3}-8 t\right) d t \\
s_{B} & =t^{4}-4 t^{2}
\end{aligned}
$$

The positions of particle A at $t=1 \mathrm{~s}$ and 4 s are

$$
\begin{aligned}
& \left.s_{A}\right|_{t=1 s}=1^{3}-\frac{3}{2}\left(1^{2}\right)=-0.500 \mathrm{ft} \\
& \left.s_{A}\right|_{t=4 s}=4^{3}-\frac{3}{2}\left(4^{2}\right)=40.0 \mathrm{ft}
\end{aligned}
$$

Particle A has traveled

$$
d_{A}=2(0.5)+40.0=41.0 \mathrm{ft}
$$

Ans.
The positions of particle B at $t=\sqrt{2} \mathrm{~s}$ and 4 s are

$$
\begin{aligned}
\left.s_{B}\right|_{t=\sqrt{2}} & =(\sqrt{2})^{4}-4(\sqrt{2})^{2}=-4 \mathrm{ft} \\
\left.s_{B}\right|_{t=4} & =(4)^{4}-4(4)^{2}=192 \mathrm{ft}
\end{aligned}
$$

Particle B has traveled

$$
d_{B}=2(4)+192=200 \mathrm{ft}
$$

At $t=4 \mathrm{~s}$ the distance beween A and B is

$$
\Delta s_{A B}=192-40=152 \mathrm{ft}
$$

Ans.

Ans.

Ans:
$d_{A}=41.0 \mathrm{ft}$
$d_{B}=200 \mathrm{ft}$
$\Delta s_{A B}=152 \mathrm{ft}$

12-29.

A ball A is thrown vertically upward from the top of a $30-\mathrm{m}$-high building with an initial velocity of $5 \mathrm{~m} / \mathrm{s}$. At the same instant another ball B is thrown upward from the ground with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. Determine the height from the ground and the time at which they pass.

SOLUTION

Origin at roof:
Ball A :

$$
\begin{aligned}
(+\uparrow) \quad s & =s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2} \\
-s & =0+5 t-\frac{1}{2}(9.81) t^{2}
\end{aligned}
$$

Ball B:

$(+\uparrow)$

$$
\begin{aligned}
s & =s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2} \\
-s & =-30+20 t-\frac{1}{2}(9.81) t^{2}
\end{aligned}
$$

Solving,
$t=2 \mathrm{~s}$
$s=9.62 \mathrm{~m}$
Distance from ground,
$d=(30-9.62)=20.4 \mathrm{~m}$
Also, origin at ground,
$s=s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2}$
$s_{A}=30+5 t+\frac{1}{2}(-9.81) t^{2}$
$s_{B}=0+20 t+\frac{1}{2}(-9.81) t^{2}$

Require
$s_{A}=s_{B}$
$30+5 t+\frac{1}{2}(-9.81) t^{2}=20 t+\frac{1}{2}(-9.81) t^{2}$
$t=2 \mathrm{~s}$
$s_{B}=20.4 \mathrm{~m}$

Ans.

Ans.

Ans.

Ans.

Ans:

$h=20.4 \mathrm{~m}$ $t=2 \mathrm{~s}$

12-30.

A sphere is fired downwards into a medium with an initial speed of $27 \mathrm{~m} / \mathrm{s}$. If it experiences a deceleration of $a=(-6 t) \mathrm{m} / \mathrm{s}^{2}$, where t is in seconds, determine the distance traveled before it stops.

SOLUTION

Velocity: $v_{0}=27 \mathrm{~m} / \mathrm{s}$ at $t_{0}=0 \mathrm{~s}$. Applying Eq. 12-2, we have

$$
\begin{gather*}
(+\downarrow) d v=a d t \\
\int_{27}^{v} d v=\int_{0}^{t}-6 t d t \\
v=\left(27-3 t^{2}\right) \mathrm{m} / \mathrm{s}
\end{gather*}
$$

At $v=0$, from Eq. (1)

$$
0=27-3 t^{2} \quad t=3.00 \mathrm{~s}
$$

Distance Traveled: $s_{0}=0 \mathrm{~m}$ at $t_{0}=0 \mathrm{~s}$. Using the result $v=27-3 t^{2}$ and applying Eq. 12-1, we have

$$
\begin{align*}
(+\downarrow) & =v d t \\
\int_{0}^{s} d s & =\int_{0}^{t}\left(27-3 t^{2}\right) d t \\
s & =\left(27 t-t^{3}\right) \mathrm{m}
\end{align*}
$$

At $t=3.00 \mathrm{~s}$, from Eq. (2)

$$
s=27(3.00)-3.00^{3}=54.0 \mathrm{~m}
$$

Ans.

Ans:

$s=54.0 \mathrm{~m}$

12-31.

The velocity of a particle traveling along a straight line is $v=v_{0}-k s$, where k is constant. If $s=0$ when $t=0$, determine the position and acceleration of the particle as a function of time.

SOLUTION

Position:

$(\stackrel{ \pm}{\rightarrow}) \quad d t=\frac{d s}{v}$

$$
\int_{0}^{t} d t=\int_{0}^{s} \frac{d s}{v_{0}-k s}
$$

$$
\left.t\right|_{0} ^{t}=-\left.\frac{1}{k} \ln \left(v_{0}-k s\right)\right|_{0} ^{s}
$$

$$
t=\frac{1}{k} \ln \left(\frac{v_{0}}{v_{0}-k s}\right)
$$

$$
e^{k t}=\frac{v_{0}}{v_{0}-k s}
$$

$$
s=\frac{v_{0}}{k}\left(1-e^{-k t}\right)
$$

Ans.

Velocity:

$$
\begin{aligned}
& v=\frac{d s}{d t}=\frac{d}{d t}\left[\frac{v_{0}}{k}\left(1-e^{-k t}\right)\right] \\
& v=v_{0} e^{-k t}
\end{aligned}
$$

Acceleration:

$$
\begin{aligned}
& a=\frac{d v}{d t}=\frac{d}{d t}\left(v_{0} e^{-k t}\right) \\
& a=-k v_{0} e^{-k t}
\end{aligned}
$$

Ans.

Ans:

$s=\frac{v_{0}}{k}\left(1-e^{-k t}\right)$
$a=-k v_{0} e^{-k t}$

*12-32.

Ball A is thrown vertically upwards with a velocity of v_{0}. Ball B is thrown upwards from the same point with the same velocity t seconds later. Determine the elapsed time $t<2 v_{0} / g$ from the instant ball A is thrown to when the balls pass each other, and find the velocity of each ball at this instant.

SOLUTION

Kinematics: First, we will consider the motion of ball A with $\left(v_{A}\right)_{0}=v_{0},\left(s_{A}\right)_{0}=0$, $s_{A}=h, t_{A}=t^{\prime}$, and $\left(a_{c}\right)_{A}=-g$.
$(+\uparrow) \quad s_{A}=\left(s_{A}\right)_{0}+\left(v_{A}\right)_{0} t_{A}+\frac{1}{2}\left(a_{c}\right)_{A} t_{A}{ }^{2}$

$$
h=0+v_{0} t^{\prime}+\frac{1}{2}(-g)\left(t^{\prime}\right)^{2}
$$

$$
\begin{equation*}
h=v_{0} t^{\prime}-\frac{g}{2} t^{\prime 2} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& v_{A}=\left(v_{A}\right)_{0}+\left(a_{c}\right)_{A} t_{A} \\
& v_{A}=v_{0}+(-g)\left(t^{\prime}\right) \\
& v_{A}=v_{0}-g t^{\prime} \tag{2}
\end{align*}
$$

The motion of ball B requires $\left(v_{B}\right)_{0}=v_{0},\left(s_{B}\right)_{0}=0, s_{B}=h, t_{B}=t^{\prime}-t$, and $\left(a_{c}\right)_{B}=-g$.
$(+\uparrow) \quad s_{B}=\left(s_{B}\right)_{0}+\left(v_{B}\right)_{0} t_{B}+\frac{1}{2}\left(a_{c}\right)_{B} t_{B}{ }^{2}$

$$
\begin{align*}
& h=0+v_{0}\left(t^{\prime}-t\right)+\frac{1}{2}(-g)\left(t^{\prime}-t\right)^{2} \\
& h=v_{0}\left(t^{\prime}-t\right)-\frac{g}{2}\left(t^{\prime}-t\right)^{2} \tag{3}
\end{align*}
$$

$(+\uparrow) \quad v_{B}=\left(v_{B}\right)_{0}+\left(a_{c}\right)_{B} t_{B}$
$v_{B}=v_{0}+(-g)\left(t^{\prime}-t\right)$
$v_{B}=v_{0}-g\left(t^{\prime}-t\right)$

(a)

Solving Eqs. (1) and (3),

$$
\begin{aligned}
& v_{0} t^{\prime}-\frac{g}{2} t^{\prime 2}=v_{0}\left(t^{\prime}-t\right)-\frac{g}{2}\left(t^{\prime}-t\right)^{2} \\
& t^{\prime}=\frac{2 v_{0}+g t}{2 g}
\end{aligned}
$$

Ans.
Substituting this result into Eqs. (2) and (4),

$$
\begin{aligned}
v_{A} & =v_{0}-g\left(\frac{2 v_{0}+g t}{2 g}\right) \\
& =-\frac{1}{2} g t=\frac{1}{2} g t \downarrow \\
v_{B} & =v_{0}-g\left(\frac{2 v_{0}+g t}{2 g}-t\right) \\
& =\frac{1}{2} g t \uparrow
\end{aligned}
$$

Ans.

Ans.

Ans:
$t^{\prime}=\frac{2 v_{0}+g t}{2 g}$
$v_{A}=\frac{1}{2} g t \downarrow$
$v_{B}=\frac{1}{2} g t \uparrow$

12-33.

As a body is projected to a high altitude above the earth's surface, the variation of the acceleration of gravity with respect to altitude y must be taken into account. Neglecting air resistance, this acceleration is determined from the formula $a=-g_{0}\left[R^{2} /(R+y)^{2}\right]$, where g_{0} is the constant gravitational acceleration at sea level, R is the radius of the earth, and the positive direction is measured upward. If $g_{0}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ and $R=6356 \mathrm{~km}$, determine the minimum initial velocity (escape velocity) at which a projectile should be shot vertically from the earth's surface so that it does not fall back to the earth. Hint: This requires that $v=0$ as $y \rightarrow \infty$.

SOLUTION

$$
\begin{aligned}
v d v & =a d y \\
\int_{v}^{0} v d v & =-g_{0} R^{2} \int_{0}^{\infty} \frac{d y}{(R+y)^{2}} \\
\left.\frac{v^{2}}{2}\right|_{v} ^{0} & =\left.\frac{g_{0} R^{2}}{R+y}\right|_{0} ^{\infty} \\
v & =\sqrt{2 g_{0} R} \\
& =\sqrt{2(9.81)(6356)(10)^{3}} \\
& =11167 \mathrm{~m} / \mathrm{s}=11.2 \mathrm{~km} / \mathrm{s}
\end{aligned}
$$

Ans.

Ans:

$v=11.2 \mathrm{~km} / \mathrm{s}$

12-34.

Accounting for the variation of gravitational acceleration a with respect to altitude y (see Prob. 12-36), derive an equation that relates the velocity of a freely falling particle to its altitude. Assume that the particle is released from rest at an altitude y_{0} from the earth's surface. With what velocity does the particle strike the earth if it is released from rest at an altitude $y_{0}=500 \mathrm{~km}$? Use the numerical data in Prob. 12-36.

SOLUTION

From Prob. 12-36,
$(+\uparrow) \quad a=-g_{0} \frac{R^{2}}{(R+y)^{2}}$
Since $a d y=v d v$
then
$-g_{0} R^{2} \int_{y_{0}}^{y} \frac{d y}{(R+y)^{2}}=\int_{0}^{v} v d v$
$g_{0} R^{2}\left[\frac{1}{R+y}\right]_{y_{0}}^{y}=\frac{v^{2}}{2}$
$g_{0} R^{2}\left[\frac{1}{R+y}-\frac{1}{R+y_{0}}\right]=\frac{v^{2}}{2}$
Thus
$v=-R \sqrt{\frac{2 g_{0}\left(y_{0}-y\right)}{(R+y)\left(R+y_{0}\right)}}$
When $y_{0}=500 \mathrm{~km}, \quad y=0$,
$v=-6356\left(10^{3}\right) \sqrt{\frac{2(9.81)(500)\left(10^{3}\right)}{6356(6356+500)\left(10^{6}\right)}}$
$v=-3016 \mathrm{~m} / \mathrm{s}=3.02 \mathrm{~km} / \mathrm{s} \downarrow$

Ans.

Ans.

Ans:
$v=-R \sqrt{\frac{2 g_{0}\left(y_{0}-y\right)}{(R+y)\left(R+y_{0}\right)}}$
$v_{\text {imp }}=3.02 \mathrm{~km} / \mathrm{s}$

12-35.

A freight train starts from rest and travels with a constant acceleration of $0.5 \mathrm{ft} / \mathrm{s}^{2}$. After a time t^{\prime} it maintains a constant speed so that when $t=160 \mathrm{~s}$ it has traveled 2000 ft . Determine the time t^{\prime} and draw the v - t graph for the motion.

SOLUTION

Total Distance Traveled: The distance for part one of the motion can be related to time $t=t^{\prime}$ by applying Eq. $12-5$ with $s_{0}=0$ and $v_{0}=0$.

$$
\begin{gathered}
\stackrel{\text { 土 }}{ }) \quad s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2} \\
s_{1}=0+0+\frac{1}{2}(0.5)\left(t^{\prime}\right)^{2}=0.25\left(t^{\prime}\right)^{2}
\end{gathered}
$$

The velocity at time t can be obtained by applying Eq. 12-4 with $v_{0}=0$.

$$
\begin{equation*}
(\xrightarrow{ \pm}) \quad v=v_{0}+a_{c} t=0+0.5 t=0.5 t \tag{1}
\end{equation*}
$$

The time for the second stage of motion is $t_{2}=160-t^{\prime}$ and the train is traveling at a constant velocity of $v=0.5 t^{\prime}$ (Eq. (1)).Thus, the distance for this part of motion is

$$
(\xrightarrow{+}) \quad s_{2}=v t_{2}=0.5 t^{\prime}\left(160-t^{\prime}\right)=80 t^{\prime}-0.5\left(t^{\prime}\right)^{2}
$$

If the total distance traveled is $s_{\text {Tot }}=2000$, then

$$
\begin{gathered}
s_{\mathrm{Tot}}=s_{1}+s_{2} \\
2000=0.25\left(t^{\prime}\right)^{2}+80 t^{\prime}-0.5\left(t^{\prime}\right)^{2} \\
0.25\left(t^{\prime}\right)^{2}-80 t^{\prime}+2000=0
\end{gathered}
$$

Choose a root that is less than 160 s , then

$$
t^{\prime}=27.34 \mathrm{~s}=27.3 \mathrm{~s}
$$

Ans.
$\boldsymbol{v}-\boldsymbol{t}$ Graph: The equation for the velocity is given by Eq. (1). When $t=t^{\prime}=27.34 \mathrm{~s}$, $v=0.5(27.34)=13.7 \mathrm{ft} / \mathrm{s}$.

Ans:

$t^{\prime}=27.3 \mathrm{~s}$.
When $t=27.3 \mathrm{~s}, v=13.7 \mathrm{ft} / \mathrm{s}$.

*12-36.

The $s-t$ graph for a train has been experimentally determined. From the data, construct the $v-t$ and $a-t$ graphs for the motion; $0 \leq t \leq 40 \mathrm{~s}$. For $0 \leq t \leq 30 \mathrm{~s}$, the curve is $s=\left(0.4 t^{2}\right) \mathrm{m}$, and then it becomes straight for $t \geq 30 \mathrm{~s}$.

SOLUTION

$$
\begin{aligned}
& 0 \leq t \leq 30: \\
& s=0.4 t^{2} \\
& v=\frac{d s}{d t}=0.8 t \\
& a=\frac{d v}{d t}=0.8 \\
& 30 \leq t \leq 40: \\
& s-360=\left(\frac{600-360}{40-30}\right)(t-30) \\
& s=24(t-30)+360 \\
& v=\frac{d s}{d t}=24 \\
& a=\frac{d v}{d t}=0
\end{aligned}
$$

Ans:
$s=0.4 t^{2}$
$v=\frac{d s}{d t}=0.8 t$
$a=\frac{d v}{d t}=0.8$
$s=24(t-30)+360$
$v=\frac{d s}{d t}=24$
$a=\frac{d v}{d t}=0$

12-37.

Two rockets start from rest at the same elevation. Rocket A accelerates vertically at $20 \mathrm{~m} / \mathrm{s}^{2}$ for 12 s and then maintains a constant speed. Rocket B accelerates at $15 \mathrm{~m} / \mathrm{s}^{2}$ until reaching a constant speed of $150 \mathrm{~m} / \mathrm{s}$. Construct the $a-t, v-t$, and $s-t$ graphs for each rocket until $t=20 \mathrm{~s}$. What is the distance between the rockets when $t=20 \mathrm{~s}$?

SOLUTION

For rocket A
For $t<12 \mathrm{~s}$

$$
\begin{aligned}
+\uparrow v_{A} & =\left(v_{A}\right)_{0}+a_{A} t \\
v_{A} & =0+20 t \\
v_{A} & =20 t \\
+\uparrow s_{A} & =\left(s_{A}\right)_{0}+\left(v_{A}\right)_{0} t+\frac{1}{2} a_{A} t^{2} \\
s_{A} & =0+0+\frac{1}{2}(20) t^{2} \\
s_{A} & =10 t^{2}
\end{aligned}
$$

When $t=12 \mathrm{~s}, \quad v_{A}=240 \mathrm{~m} / \mathrm{s}$

$$
s_{A}=1440 \mathrm{~m}
$$

For $t>12 \mathrm{~s}$
$v_{A}=240 \mathrm{~m} / \mathrm{s}$
$s_{A}=1440+240(t-12)$
For rocket B
For $t<10 \mathrm{~s}$

$$
\begin{aligned}
+\uparrow v_{B} & =\left(v_{B}\right)_{0}+a_{B} t \\
v_{B} & =0+15 t \\
v_{B} & =15 t \\
+\uparrow s_{B} & =\left(s_{B}\right)_{0}+\left(v_{B}\right)_{0} t+\frac{1}{2} a_{B} t^{2} \\
s_{B} & =0+0+\frac{1}{2}(15) t^{2} \\
s_{B} & =7.5 t^{2}
\end{aligned}
$$

When $t=10 \mathrm{~s}, \quad v_{B}=150 \mathrm{~m} / \mathrm{s}$

$$
s_{B}=750 \mathrm{~m}
$$

For $t>10 \mathrm{~s}$
$v_{B}=150 \mathrm{~m} / \mathrm{s}$
$s_{B}=750+150(t-10)$
When $t=20 \mathrm{~s}, \quad s_{A}=3360 \mathrm{~m}, \quad s_{B}=2250 \mathrm{~m}$
$\Delta s=1110 \mathrm{~m}=1.11 \mathrm{~km}$

12-38.

A particle starts from $s=0$ and travels along a straight line with a velocity $v=\left(t^{2}-4 t+3\right) \mathrm{m} / \mathrm{s}$, where t is in seconds. Construct the $v-t$ and $a-t$ graphs for the time interval $0 \leq t \leq 4 \mathrm{~s}$.

SOLUTION

a-t Graph:

$$
\begin{aligned}
& a=\frac{d v}{d t}=\frac{d}{d t}\left(t^{2}-4 t+3\right) \\
& a=(2 t-4) \mathrm{m} / \mathrm{s}^{2}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \left.a\right|_{t=0}=2(0)-4=-4 \mathrm{~m} / \mathrm{s}^{2} \\
& \left.a\right|_{t=2}=0 \\
& \left.a\right|_{t=4 \mathrm{~s}}=2(4)-4=4 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

The $a-t$ graph is shown in Fig. a.
$\boldsymbol{v}-\boldsymbol{t} \boldsymbol{G r a p h}$: The slope of the $v-t$ graph is zero when $a=\frac{d v}{d t}=0$. Thus,

$$
a=2 t-4=0 \quad t=2 \mathrm{~s}
$$

The velocity of the particle at $t=0 \mathrm{~s}, 2 \mathrm{~s}$, and 4 s are

$$
\begin{aligned}
& \left.v\right|_{t=0 \mathrm{~s}}=0^{2}-4(0)+3=3 \mathrm{~m} / \mathrm{s} \\
& \left.v\right|_{t=2 \mathrm{~s}}=2^{2}-4(2)+3=-1 \mathrm{~m} / \mathrm{s} \\
& \left.v\right|_{t=4 \mathrm{~s}}=4^{2}-4(4)+3=3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The $v-t$ graph is shown in Fig. b.

(b)

> Ans:
> $\left.a\right|_{t=0}=-4 \mathrm{~m} / \mathrm{s}^{2}$
> $\left.a\right|_{t=2 \mathrm{~s}}=0$
> $\left.a\right|_{t=4 \mathrm{~s}}=4 \mathrm{~m} / \mathrm{s}^{2}$
> $\left.v\right|_{t=0}=3 \mathrm{~m} / \mathrm{s}$
> $\left.v\right|_{t=2 \mathrm{~s}}=-1 \mathrm{~m} / \mathrm{s}$
> $\left.v\right|_{t=4 \mathrm{~s}}=3 \mathrm{~m} / \mathrm{s}$

12-39.

If the position of a particle is defined by $s=[2 \sin (\pi / 5) t+4] \mathrm{m}$, where t is in seconds, construct the $s-t, v-t$, and $a-t$ graphs for $0 \leq t \leq 10 \mathrm{~s}$.

SOLUTION

Ans:

$s=2 \sin \left(\frac{\pi}{5} t\right)+4$
$v=\frac{2 \pi}{5} \cos \left(\frac{\pi}{5} t\right)$
$a=-\frac{2 \pi^{2}}{25} \sin \left(\frac{\pi}{5} t\right)$

*12-40.

An airplane starts from rest, travels 5000 ft down a runway, and after uniform acceleration, takes off with a speed of $162 \mathrm{mi} / \mathrm{h}$. It then climbs in a straight line with a uniform acceleration of $3 \mathrm{ft} / \mathrm{s}^{2}$ until it reaches a constant speed of $220 \mathrm{mi} / \mathrm{h}$. Draw the $s-t, v-t$, and $a-t$ graphs that describe the motion.

SOLUTION

$v_{1}=0$
$v_{2}=162 \frac{\mathrm{mi}}{\mathrm{h}} \frac{(1 \mathrm{~h}) 5280 \mathrm{ft}}{(3600 \mathrm{~s})(1 \mathrm{mi})}=237.6 \mathrm{ft} / \mathrm{s}$
$v_{2}^{2}=v_{1}^{2}+2 a_{c}\left(s_{2}-s_{1}\right)$
$(237.6)^{2}=0^{2}+2\left(a_{c}\right)(5000-0)$
$a_{c}=5.64538 \mathrm{ft} / \mathrm{s}^{2}$
$v_{2}=v_{1}+a_{c} t$
$237.6=0+5.64538 t$
$t=42.09=42.1 \mathrm{~s}$
$v_{3}=220 \frac{\mathrm{mi}}{\mathrm{h}} \frac{(1 \mathrm{~h}) 5280 \mathrm{ft}}{(3600 \mathrm{~s})(1 \mathrm{mi})}=322.67 \mathrm{ft} / \mathrm{s}$
$v_{3}^{2}=v_{2}^{2}+2 a_{c}\left(s_{3}-s_{2}\right)$
$(322.67)^{2}=(237.6)^{2}+2(3)(s-5000)$
$s=12943.34 \mathrm{ft}$
$v_{3}=v_{2}+a_{c} t$
$322.67=237.6+3 t$
$t=28.4 \mathrm{~s}$

Ans:

$s=12943.34 \mathrm{ft}$
$v_{3}=v_{2}+a_{c} t$
$t=28.4 \mathrm{~s}$

12-41.

The elevator starts from rest at the first floor of the building. It can accelerate at $5 \mathrm{ft} / \mathrm{s}^{2}$ and then decelerate at $2 \mathrm{ft} / \mathrm{s}^{2}$. Determine the shortest time it takes to reach a floor 40 ft above the ground. The elevator starts from rest and then stops. Draw the $a-t, v-t$, and $s-t$ graphs for the motion.

SOLUTION

$$
\begin{aligned}
+\uparrow v_{2} & =v_{1}+a_{c} t_{1} \\
v_{\max } & =0+5 t_{1} \\
+\uparrow v_{3} & =v_{2}+a_{c} t \\
0 & =v_{\max }-2 t_{2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
t_{1} & =0.4 t_{2} \\
+\uparrow s_{2} & =s_{1}+v_{1} t_{1}+\frac{1}{2} a_{c} t_{1}^{2} \\
h & =0+0+\frac{1}{2}(5)\left(t_{1}^{2}\right)=2.5 t_{1}^{2} \\
+\uparrow 40 & -h=0+v_{\max } t_{2}-\frac{1}{2}(2) t_{2}^{2} \\
+\uparrow v^{2} & =v_{1}^{2}+2 a_{c}\left(s-s_{1}\right) \\
v_{\max }^{2} & =0+2(5)(h-0) \\
v_{\max }^{2} & =10 h \\
0 & =v_{\max }^{2}+2(-2)(40-h) \\
v_{\max }^{2} & =160-4 h
\end{aligned}
$$

Thus,

$$
\begin{aligned}
10 h & =160-4 h \\
h & =11.429 \mathrm{ft} \\
v_{\max } & =10.69 \mathrm{ft} / \mathrm{s} \\
t_{1} & =2.138 \mathrm{~s} \\
t_{2} & =5.345 \mathrm{~s} \\
t & =t_{1}+t_{2}=7.48 \mathrm{~s}
\end{aligned}
$$

When $t=2.145, v=v_{\max }=10.7 \mathrm{ft} / \mathrm{s}$
and $h=11.4 \mathrm{ft}$.

Ans.

Ans:

$t=7.48 \mathrm{~s}$. When $t=2.14 \mathrm{~s}$,
$v=v_{\text {max }}=10.7 \mathrm{ft} / \mathrm{s}$
$h=11.4 \mathrm{ft}$

12-42.

The velocity of a car is plotted as shown. Determine the total distance the car moves until it stops $(t=80 \mathrm{~s})$. Construct the $a-t$ graph.

SOLUTION

Distance Traveled: The total distance traveled can be obtained by computing the
 area under the $v-t$ graph.

$$
s=10(40)+\frac{1}{2}(10)(80-40)=600 \mathrm{~m}
$$

Ans.

$\boldsymbol{a}-\boldsymbol{t} \boldsymbol{G r a p h}$: The acceleration in terms of time t can be obtained by applying $a=\frac{d v}{d t}$. For time interval $0 \mathrm{~s} \leq t<40 \mathrm{~s}$,

$$
a=\frac{d v}{d t}=0
$$

For time interval $40 \mathrm{~s}<t \leq 80 \mathrm{~s}, \frac{v-10}{t-40}=\frac{0-10}{80-40}, v=\left(-\frac{1}{4} t+20\right) \mathrm{m} / \mathrm{s}$.

$$
a=\frac{d v}{d t}=-\frac{1}{4}=-0.250 \mathrm{~m} / \mathrm{s}^{2}
$$

For $0 \leq t<40 \mathrm{~s}, a=0$.

For $40 \mathrm{~s}<t \leq 80, a=-0.250 \mathrm{~m} / \mathrm{s}^{2}$.

> Ans: $\begin{aligned} & s=600 \mathrm{~m} . \text { For } 0 \leq t<40 \mathrm{~s}, \\ & a=0 . \text { For } 40 \mathrm{~s}<t \leq 80 \mathrm{~s}, \\ & a=-0.250 \mathrm{~m} / \mathrm{s}^{2}\end{aligned}$

12-43.

The motion of a jet plane just after landing on a runway is described by the $a-t$ graph. Determine the time t^{\prime} when the jet plane stops. Construct the $v-t$ and $s-t$ graphs for the motion. Here $s=0$, and $v=300 \mathrm{ft} / \mathrm{s}$ when $t=0$.

SOLUTION

$\boldsymbol{v}-\boldsymbol{t}$ Graph. The $v-t$ function can be determined by integrating $d v=a d t$. For $0 \leq t<10 \mathrm{~s}, a=0$. Using the initial condition $v=300 \mathrm{ft} / \mathrm{s}$ at $t=0$,

$$
\begin{aligned}
& \int_{300 \mathrm{ft} / \mathrm{s}}^{v} d v=\int_{0}^{t} 0 d t \\
& v-300=0 \\
& v=300 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

Ans.
For $10 \mathrm{~s}<t<20 \mathrm{~s}, \frac{a-(-20)}{t-10}=\frac{-10-(-20)}{20-10}, a=(t-30) \mathrm{ft} / \mathrm{s}^{2}$. Using the initial condition $v=300 \mathrm{ft} / \mathrm{s}$ at $t=10 \mathrm{~s}$,

$$
\begin{aligned}
& \int_{300 \mathrm{ft} / \mathrm{s}}^{v} d v=\int_{10 \mathrm{~s}}^{t}(t-30) d t \\
& v-300=\left.\left(\frac{1}{2} t^{2}-30 t\right)\right|_{10 \mathrm{~s}} ^{t} \\
& v=\left\{\frac{1}{2} t^{2}-30 t+550\right\} \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

Ans.

At $t=20 \mathrm{~s}$,
$\left.v\right|_{t=20 \mathrm{~s}}=\frac{1}{2}\left(20^{2}\right)-30(20)+550=150 \mathrm{ft} / \mathrm{s}$
For $20 \mathrm{~s}<t<t^{\prime}, a=-10 \mathrm{ft} / \mathrm{s}$. Using the initial condition $v=150 \mathrm{ft} / \mathrm{s}$ at $t=20 \mathrm{~s}$,

$$
\begin{aligned}
& \int_{150 \mathrm{ft} / \mathrm{s}}^{v} d v=\int_{20 \mathrm{~s}}^{t}-10 d t \\
& v-150=\left.(-10 t)\right|_{20 \mathrm{~s}} ^{t} \\
& v=(-10 t+350) \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

It is required that at $t=t^{\prime}, v=0$. Thus

$$
\begin{aligned}
0 & =-10 t^{\prime}+350 \\
t^{\prime} & =35 \mathrm{~s}
\end{aligned}
$$

Ans.
Using these results, the $v-t$ graph shown in Fig. a can be plotted \boldsymbol{s} - \boldsymbol{t} Graph. The $s-t$ function can be determined by integrating $d s=v d t$. For $0 \leq t<10 \mathrm{~s}$, the initial condition is $s=0$ at $t=0$.

$$
\int_{0}^{s} d s=\int_{0}^{t} 300 d t
$$

$$
s=\{300 t\} \mathrm{ft}
$$

Ans.
$\mathrm{At}=10 \mathrm{~s}$,

$$
\left.s\right|_{t=10 \mathrm{~s}}=300(10)=3000 \mathrm{ft}
$$

12-43. Continued

For $10 \mathrm{~s}<\mathrm{t}<20 \mathrm{~s}$, the initial condition is $s=3000 \mathrm{ft}$ at $t=10 \mathrm{~s}$.
$\int_{3000 \mathrm{ft}}^{s} d s=\int_{10 \mathrm{~s}}^{t}\left(\frac{1}{2} t^{2}-30 t+550\right) d t$
$s-3000=\left.\left(\frac{1}{6} t^{3}-15 t^{2}+550 t\right)\right|_{10 \mathrm{~s}} ^{t}$
$s=\left\{\frac{1}{6} t^{3}-15 t^{2}+550 t-1167\right\} \mathrm{ft}$
At $t=20 \mathrm{~s}$,

$$
s=\frac{1}{6}\left(20^{3}\right)-15\left(20^{2}\right)+550(20)-1167=5167 \mathrm{ft}
$$

For $20 \mathrm{~s}<t \leq 35 \mathrm{~s}$, the initial condition is $s=5167 \mathrm{ft}$ at $t=20 \mathrm{~s}$.
$\int_{5167 \mathrm{ft}}^{s} d s=\int_{20 \mathrm{~s}}^{t}(-10 t+350) d t$
$s-5167=\left.\left(-5 t^{2}+350 t\right)\right|_{20 \mathrm{~s}} ^{t}$
$s=\left\{-5 t^{2}+350 t+167\right\} \mathrm{ft}$
At $t=35 \mathrm{~s}$,
$\left.s\right|_{t=35 \mathrm{~s}}=-5\left(35^{2}\right)+350(35)+167=6292 \mathrm{ft}$
using these results, the s - t graph shown in Fig. b can be plotted.

Ans.

Ans:
$t^{\prime}=35 \mathrm{~s}$
For $0 \leq t<10 \mathrm{~s}$,
$s=\{300 t\} \mathrm{ft}$
$v=300 \mathrm{ft} / \mathrm{s}$
For $10 \mathrm{~s}<t<20 \mathrm{~s}$,
$s=\left\{\frac{1}{6} t^{3}-15 t^{2}+550 t-1167\right\} \mathrm{ft}$
$v=\left\{\frac{1}{2} t^{2}-30 t+550\right\} \mathrm{ft} / \mathrm{s}$
For $20 \mathrm{~s}<t \leq 35 \mathrm{~s}$,
$s=\left\{-5 t^{2}+350 t+167\right\} \mathrm{ft}$
$v=(-10 t+350) \mathrm{ft} / \mathrm{s}$

*12-44.

The $v-t$ graph for a particle moving through an electric field from one plate to another has the shape shown in the figure. The acceleration and deceleration that occur are constant and both have a magnitude of $4 \mathrm{~m} / \mathrm{s}^{2}$. If the plates are spaced 200 mm apart, determine the maximum velocity $v_{\text {max }}$ and the time t^{\prime} for the particle to travel from one plate to the other. Also draw the $s-t$ graph. When $t=t^{\prime} / 2$ the particle is at $s=100 \mathrm{~mm}$.

SOLUTION

$a_{c}=4 \mathrm{~m} / \mathrm{s}^{2}$
$\frac{s}{2}=100 \mathrm{~mm}=0.1 \mathrm{~m}$
$v^{2}=v_{0}^{2}+2 a_{c}\left(s-s_{0}\right)$
$v_{\text {max }}^{2}=0+2(4)(0.1-0)$
$v_{\text {max }}=0.89442 \mathrm{~m} / \mathrm{s} \quad=0.894 \mathrm{~m} / \mathrm{s}$
$v=v_{0}+a_{c} t^{\prime}$
$0.89442=0+4\left(\frac{t^{\prime}}{2}\right)$
$t^{\prime}=0.44721 \mathrm{~s} \quad=0.447 \mathrm{~s}$
$s=s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2}$
$s=0+0+\frac{1}{2}(4)(t)^{2}$
$s=2 t^{2}$
When $t=\frac{0.44721}{2}=0.2236=0.224 \mathrm{~s}$,
$s=0.1 \mathrm{~m}$
$\int_{0.894}^{v} d s=-\int_{0.2235}^{t} 4 d t$
$v=-4 t+1.788$
$\int_{0.1}^{s} d s=\int_{0.2235}^{t}(-4 t+1.788) d t$
$s=-2 t^{2}+1.788 t-0.2$

When $t=0.447 \mathrm{~s}$,
$s=0.2 \mathrm{~m}$

Ans.

Ans.

12-45.

The $v-t$ graph for a particle moving through an electric field from one plate to another has the shape shown in the figure, where $t^{\prime}=0.2 \mathrm{~s}$ and $v_{\text {max }}=10 \mathrm{~m} / \mathrm{s}$. Draw the $s-t$ and $a-t$ graphs for the particle. When $t=t^{\prime} / 2$ the particle is at $s=0.5 \mathrm{~m}$.

SOLUTION

For $0<t<0.1 s$,
$v=100 t$
$a=\frac{d v}{d t}=100$
$d s=v d t$
$\int_{0}^{s} d s=\int_{0}^{t} 100 t d t$
$s=50 t^{2}$

When $t=0.1 \mathrm{~s}$,
$s=0.5 \mathrm{~m}$

For $0.1 \mathrm{~s}<t<0.2 \mathrm{~s}$,
$v=-100 t+20$
$a=\frac{d v}{d t}=-100$
$d s=v d t$
$\int_{0.5}^{s} d s=\int_{0.1}^{t}(-100 t+20) \mathrm{dt}$
$s-0.5=\left(-50 t^{2}+20 t-1.5\right)$
$s=-50 t^{2}+20 t-1$

When $t=0.2 \mathrm{~s}$,
$s=1 \mathrm{~m}$
When $t=0.1 \mathrm{~s}, s=0.5 \mathrm{~m}$ and a changes from $100 \mathrm{~m} / \mathrm{s}^{2}$
to $-100 \mathrm{~m} / \mathrm{s}^{2}$. When $\mathrm{t}=0.2 \mathrm{~s}, s=1 \mathrm{~m}$.

12-46.

The $a-s$ graph for a rocket moving along a straight track has been experimentally determined. If the rocket starts at $s=0$ when $v=0$, determine its speed when it is at $s=75 \mathrm{ft}$, and 125 ft , respectively. Use Simpson's rule with $n=100$ to evaluate v at $s=125 \mathrm{ft}$.

SOLUTION

$0 \leq s<100$
$\int_{0}^{v} v d v=\int_{0}^{s} 5 d s$
$\frac{1}{2} v^{2}=5 \mathrm{~s}$
$v=\sqrt{10 \mathrm{~s}}$
At $s=75 \mathrm{ft}, \quad v=\sqrt{750}=27.4 \mathrm{ft} / \mathrm{s}$
At $s=100 \mathrm{ft}, \quad v=31.623$
$v d v=a d s$
$\int_{31.623}^{v} v d v=\int_{100}^{125}\left[5+6(\sqrt{s}-10)^{5 / 3}\right] d s$
$\left.\frac{1}{2} v^{2}\right|_{31.623} ^{v}=201.0324$
$v=37.4 \mathrm{ft} / \mathrm{s}$

Ans.

Ans.

Ans:
$\left.v\right|_{s=75 \mathrm{ft}}=27.4 \mathrm{ft} / \mathrm{s}$
$\left.v\right|_{s=125 \mathrm{ft}}=37.4 \mathrm{ft} / \mathrm{s}$

12-47.

A two-stage rocket is fired vertically from rest at $s=0$ with the acceleration as shown. After 30 s the first stage, A, burns out and the second stage, B, ignites. Plot the $v-t$ and $s-t$ graphs which describe the motion of the second stage for $0 \leq t \leq 60$ s.

SOLUTION

$v-\boldsymbol{t}$ Graph. The $v-t$ function can be determined by integrating $d v=a d t$.
For $0 \leq t<30 \mathrm{~s}, a=\frac{12}{30} t=\left(\frac{2}{5} t\right) \mathrm{m} / \mathrm{s}^{2}$. Using the initial condition $v=0$ at $t=0$,

$$
\begin{aligned}
& \int_{0}^{v} d v=\int_{0}^{t} \frac{2}{5} t d t \\
& v=\left\{\frac{1}{5} t^{2}\right\} \mathrm{m} / \mathrm{s}
\end{aligned}
$$

Ans.

At $t=30 \mathrm{~s}$,

$$
\left.v\right|_{t=30 \mathrm{~s}}=\frac{1}{5}\left(30^{2}\right)=180 \mathrm{~m} / \mathrm{s}
$$

For $30<t \leq 60 \mathrm{~s}, a=24 \mathrm{~m} / \mathrm{s}^{2}$. Using the initial condition $v=180 \mathrm{~m} / \mathrm{s}$ at $t=30 \mathrm{~s}$,

$$
\begin{aligned}
& \int_{180 \mathrm{~m} / \mathrm{s}}^{v} d v=\int_{30 \mathrm{~s}}^{t} 24 d t \\
& v-180=\left.24 t\right|_{30 \mathrm{~s}} ^{t}
\end{aligned}
$$

$$
v=\{24 t-540\} \mathrm{m} / \mathrm{s}
$$

At $t=60 \mathrm{~s}$,

$$
\left.v\right|_{t=60 \mathrm{~s}}=24(60)-540=900 \mathrm{~m} / \mathrm{s}
$$

Using these results, $v-t$ graph shown in Fig. a can be plotted.
$\boldsymbol{s}-\boldsymbol{t}$ Graph. The $s-t$ function can be determined by integrating $d s=v d t$. For $0 \leq t<30 \mathrm{~s}$, the initial condition is $s=0$ at $t=0$.

$$
\begin{aligned}
& \int_{0}^{s} d s=\int_{0}^{t} \frac{1}{5} t^{2} d t \\
& s=\left\{\frac{1}{15} t^{3}\right\} \mathrm{m}
\end{aligned}
$$

At $t=30 \mathrm{~s}$,

$$
\left.s\right|_{t=30 \mathrm{~s}}=\frac{1}{15}\left(30^{3}\right)=1800 \mathrm{~m}
$$

Ans.

12-47. Continued

For $30 \mathrm{~s}<t \leq 60 \mathrm{~s}$, the initial condition is $s=1800 \mathrm{~m}$ at $t=30 \mathrm{~s}$.

$$
\begin{aligned}
& \int_{1800 \mathrm{~m}}^{s} d s=\int_{30 \mathrm{~s}}^{t}(24 t-540) d t \\
& s-1800=\left.\left(12 t^{2}-540 t\right)\right|_{30 \mathrm{~s}} ^{t} \\
& s=\left\{12 t^{2}-540 t+7200\right\} \mathrm{m}
\end{aligned}
$$

At $t=60 \mathrm{~s}$,
$\left.s\right|_{t=60 \mathrm{~s}}=12\left(60^{2}\right)-540(60)+7200=18000 \mathrm{~m}$
Using these results, the $s-t$ graph in Fig. b can be plotted.

Ans:

For $0 \leq t<30 \mathrm{~s}$,
$v=\left\{\frac{1}{5} t^{2}\right\} \mathrm{m} / \mathrm{s}$
$s=\left\{\frac{1}{15} t^{3}\right\} \mathrm{m}$
For $30 \leq t \leq 60 \mathrm{~s}$,
$v=\{24 t-540\} \mathrm{m} / \mathrm{s}$
$s=\left\{12 t^{2}-540 t+7200\right\} \mathrm{m}$

*12-48.

The race car starts from rest and travels along a straight road until it reaches a speed of $26 \mathrm{~m} / \mathrm{s}$ in 8 s as shown on the $v-t$ graph. The flat part of the graph is caused by shifting gears. Draw the $a-t$ graph and determine the maximum acceleration of the car.

SOLUTION

For $0 \leq t<4 \mathrm{~s}$
$a=\frac{\Delta v}{\Delta t}=\frac{14}{4}=3.5 \mathrm{~m} / \mathrm{s}^{2}$
For $4 \mathrm{~s} \leq t<5 \mathrm{~s}$
$a=\frac{\Delta v}{\Delta t}=0$
For $5 \mathrm{~s} \leq t<8 \mathrm{~s}$
$a=\frac{\Delta v}{\Delta t}=\frac{26-14}{8-5}=4 \mathrm{~m} / \mathrm{s}^{2}$
$a_{\text {max }}=4.00 \mathrm{~m} / \mathrm{s}^{2}$

Ans.

Ans:
$a_{\text {max }}=4.00 \mathrm{~m} / \mathrm{s}^{2}$

12-49.

The jet car is originally traveling at a velocity of $10 \mathrm{~m} / \mathrm{s}$ when it is subjected to the acceleration shown. Determine the car's maximum velocity and the time t^{\prime} when it stops. When $t=0, s=0$.

SOLUTION

$v-\boldsymbol{t}$ Function. The $v-t$ function can be determined by integrating $d v=a d t$. For $0 \leq t<15 \mathrm{~s}, a=6 \mathrm{~m} / \mathrm{s}^{2}$. Using the initial condition $v=10 \mathrm{~m} / \mathrm{s}$ at $t=0$,
$\int_{10 \mathrm{~m} / \mathrm{s}}^{v} d v=\int_{0}^{t} 6 d t$
$v-10=6 t$
$v=\{6 t+10\} \mathrm{m} / \mathrm{s}$
The maximum velocity occurs when $t=15 \mathrm{~s}$. Then

$$
v_{\max }=6(15)+10=100 \mathrm{~m} / \mathrm{s} \quad \text { Ans. }
$$

For $15 \mathrm{~s}<t \leq t^{\prime}, a=-4 \mathrm{~m} / \mathrm{s}$, Using the initial condition $v=100 \mathrm{~m} / \mathrm{s}$ at $t=15 \mathrm{~s}$,
$\int_{100 \mathrm{~m} / \mathrm{s}}^{v} d v=\int_{15 \mathrm{~s}}^{t}-4 d t$
$v-100=\left.(-4 t)\right|_{15 \mathrm{~s}} ^{t}$
$v=\{-4 t+160\} \mathrm{m} / \mathrm{s}$
It is required that $v=0$ at $t=t^{\prime}$. Then

$$
0=-4 t^{\prime}+160 \quad t^{\prime}=40 \mathrm{~s}
$$

Ans.

> Ans:
> $v_{\max }=100 \mathrm{~m} / \mathrm{s}$
> $t^{\prime}=40 \mathrm{~s}$

12-50.

The car starts from rest at $s=0$ and is subjected to an acceleration shown by the $a-s$ graph. Draw the $v-s$ graph and determine the time needed to travel 200 ft .

SOLUTION

For $s<300 \mathrm{ft}$
$a d s=v d v$
$\int_{0}^{s} 12 d s=\int_{0}^{v} v d v$
$12 \mathrm{~s}=\frac{1}{2} v^{2}$
$v=4.90 \mathrm{~s}^{1 / 2}$
At $s=300 \mathrm{ft}, \quad v=84.85 \mathrm{ft} / \mathrm{s}$
For $300 \mathrm{ft}<s<450 \mathrm{ft}$
$a d s=v d v$
$\int_{300}^{s}(24-0.04 s) d s=\int_{84.85}^{v} v d v$
$24 s-0.02 s^{2}-5400=0.5 v^{2}-3600$
$v=\left(-0.04 s^{2}+48 s-3600\right)^{1 / 2}$
At $s=450 \mathrm{ft}, \quad v=99.5 \mathrm{ft} / \mathrm{s}$
$v=4.90 \mathrm{~s}^{1 / 2}$
$\frac{d s}{d t}=4.90 \mathrm{~s}^{1 / 2}$
$\int_{0}^{200} s^{-1 / 2} d s=\int_{0}^{t} 4.90 d t$
$\left.2 s^{1 / 2}\right|_{0} ^{200}=4.90 t$
$t=5.77 \mathrm{~s}$

Ans.

Ans:

For $0 \leq s<300 \mathrm{ft}$, $v=\left\{4.90 s^{1 / 2}\right\} \mathrm{m} / \mathrm{s}$.
For $300 \mathrm{ft}<s \leq 450 \mathrm{ft}$,
$v=\left\{\left(-0.04 s^{2}+48 s-3600\right)^{1 / 2}\right\} \mathrm{m} / \mathrm{s}$.
$s=200 \mathrm{ft}$ when $t=5.77 \mathrm{~s}$.

12-51.

The $v-t$ graph for a train has been experimentally determined. From the data, construct the $s-t$ and $a-t$ graphs for the motion for $0 \leq t \leq 180 \mathrm{~s}$. When $t=0, s=0$.

SOLUTION

$\boldsymbol{s}-\boldsymbol{t}$ Graph. The $s-t$ function can be determined by integrating $d s=v d t$. For $0 \leq t<60 \mathrm{~s}, v=\frac{6}{60} t=\left(\frac{1}{10} t\right) \mathrm{m} / \mathrm{s}$. Using the initial condition

 $s=0$ at $t=0$,

$$
\begin{aligned}
& \int_{0}^{s} d s=\int_{0}^{t}\left(\frac{1}{10} t\right) d t \\
& s=\left\{\frac{1}{20} t^{2}\right\} \mathrm{m}
\end{aligned}
$$

Ans.

When $t=60 \mathrm{~s}$,

$$
\left.s\right|_{t-60 \mathrm{~s}}=\frac{1}{20}\left(60^{2}\right)=180 \mathrm{~m}
$$

For $60 \mathrm{~s}<t<120 \mathrm{~s}, v=6 \mathrm{~m} / \mathrm{s}$. Using the initial condition $s=180 \mathrm{~m}$ at $t=60 \mathrm{~s}$,

$$
\begin{aligned}
& \int_{180 \mathrm{~m}}^{s} d s=\int_{60 \mathrm{~s}}^{t} 6 d t \\
& s-180=\left.6 t\right|_{60 \mathrm{~s}} ^{t} \\
& s=\{6 t-180\} \mathrm{m}
\end{aligned}
$$

Ans.

At $t=120 \mathrm{~s}$,

$$
\left.s\right|_{t-120 \mathrm{~s}}=6(120)-180=540 \mathrm{~m}
$$

For $120 \mathrm{~s}<t \leq 180 \mathrm{~s}, \frac{v-6}{t-120}=\frac{10-6}{180-120} ; v=\left\{\frac{1}{15} t-2\right\} \mathrm{m} / \mathrm{s}$. Using the initial condition $s=540 \mathrm{~m}$ at $t=120 \mathrm{~s}$,

$$
\begin{aligned}
& \int_{540 \mathrm{~m}}^{s} d s=\int_{120 \mathrm{~s}}^{t}\left(\frac{1}{15} \mathrm{t}-2\right) d t \\
& s-540=\left.\left(\frac{1}{30} t^{2}-2 t\right)\right|_{120 \mathrm{~s}} ^{t} \\
& s=\left\{\frac{1}{30} t^{2}-2 t+300\right\} \mathrm{m}
\end{aligned}
$$

Ans.

At $t=180 \mathrm{~s}$,

$$
\left.s\right|_{t=180 \mathrm{~s}}=\frac{1}{30}\left(180^{2}\right)-2(180)+300=1020 \mathrm{~m}
$$

Using these results, $s-t$ graph shown in Fig. a can be plotted.

12-51. Continued

$\boldsymbol{a}-\boldsymbol{t}$ Graph. The $a-t$ function can be determined using $a=\frac{d v}{d t}$.
For $0 \leq t<60 \mathrm{~s}, \quad a=\frac{d\left(\frac{1}{10} t\right)}{d t}=0.1 \mathrm{~m} / \mathrm{s}^{2}$
For $60 \mathrm{~s}<t<120 \mathrm{~s}, \quad a=\frac{d(6)}{d t}=0$
Ans.

Ans.
For $120 \mathrm{~s}<t \leq 180 \mathrm{~s}, \quad a=\frac{d\left(\frac{1}{15} t-2\right)}{d t}=0.0667 \mathrm{~m} / \mathrm{s}^{2}$
Ans.
Using these results, $a-t$ graph shown in Fig. b can be plotted.

Ans:
For $0 \leq t<60 \mathrm{~s}$,
$s=\left\{\frac{1}{20} t^{2}\right\} \mathrm{m}$,
$a=0.1 \mathrm{~m} / \mathrm{s}^{2}$.
For $60 \mathrm{~s}<t<120 \mathrm{~s}$,
$s=\{6 t-180\} \mathrm{m}$,
$a=0$. For $120 \mathrm{~s}<t \leq 180 \mathrm{~s}$,
$s=\left\{\frac{1}{30} t^{2}-2 t+300\right\} \mathrm{m}$,
$a=0.0667 \mathrm{~m} / \mathrm{s}^{2}$.
*12-52.
A motorcycle starts from rest at $s=0$ and travels along a straight road with the speed shown by the $v-t$ graph. Determine the total distance the motorcycle travels until it stops when $t=15 \mathrm{~s}$. Also plot the $a-t$ and $s-t$ graphs.

SOLUTION

For $t<4 \mathrm{~s}$
$a=\frac{d v}{d t}=1.25$
$\int_{0}^{s} d s=\int_{0}^{t} 1.25 t d t$
$s=0.625 t^{2}$
When $t=4 \mathrm{~s}, \quad s=10 \mathrm{~m}$
For $4 \mathrm{~s}<t<10 \mathrm{~s}$
$a=\frac{d v}{d t}=0$
$\int_{10}^{s} d s=\int_{4}^{t} 5 d t$
$s=5 t-10$
When $t=10 \mathrm{~s}, \quad s=40 \mathrm{~m}$
For $10 \mathrm{~s}<t<15 \mathrm{~s}$
$a=\frac{d v}{d t}=-1$
$\int_{40}^{s} d s=\int_{10}^{t}(15-t) d t$
$s=15 t-0.5 t^{2}-60$
When $t=15 \mathrm{~s}, \quad s=52.5 \mathrm{~m}$

Ans.

Ans:
When $t=15 \mathrm{~s}, \quad s=52.5 \mathrm{~m}$

12-53.

A motorcycle starts from rest at $s=0$ and travels along a straight road with the speed shown by the $v-t$ graph. Determine the motorcycle's acceleration and position when $t=8 \mathrm{~s}$ and $t=12 \mathrm{~s}$.

SOLUTION

At $t=8 \mathrm{~s}$
$a=\frac{d v}{d t}=0$
$\Delta s=\int v d t$
$s-0=\frac{1}{2}(4)(5)+(8-4)(5)=30$
$s=30 \mathrm{~m}$
At $t=12 \mathrm{~s}$
$a=\frac{d v}{d t}=\frac{-5}{5}=-1 \mathrm{~m} / \mathrm{s}^{2}$
$\Delta s=\int v d t$
$s-0=\frac{1}{2}(4)(5)+(10-4)(5)+\frac{1}{2}(15-10)(5)-\frac{1}{2}\left(\frac{3}{5}\right)(5)\left(\frac{3}{5}\right)(5)$
$s=48 \mathrm{~m}$

Ans.

Ans.

Ans.

Ans.

Ans:
At $t=8 \mathrm{~s}$,
$a=0$ and $s=30 \mathrm{~m}$.
At $t=12 \mathrm{~s}$,
$a=-1 \mathrm{~m} / \mathrm{s}^{2}$
and $s=48 \mathrm{~m}$.

12-54.

The $v-t$ graph for the motion of a car as it moves along a straight road is shown. Draw the $s-t$ and $a-t$ graphs. Also determine the average speed and the distance traveled for
 the 15 -s time interval. When $t=0, s=0$.

SOLUTION

$\boldsymbol{s}-\boldsymbol{t}$ Graph. The $s-t$ function can be determined by integrating $d s=v d t$.
 For $0 \leq t<5 \mathrm{~s}, v=0.6 t^{2}$. Using the initial condition $s=0$ at $t=0$,

$$
\int_{0}^{s} d s=\int_{0}^{t} 0.6 t^{2} d t
$$

$$
s=\left\{0.2 t^{3}\right\} \mathrm{m}
$$

Ans.
At $t=5 \mathrm{~s}$,

$$
\left.s\right|_{t=5 \mathrm{~s}}=0.2\left(5^{3}\right)=25 \mathrm{~m}
$$

For $5 \mathrm{~s}<t \leq 15 \mathrm{~s}, \frac{v-15}{t-5}=\frac{0-15}{15-5} ; v=\frac{1}{2}(45-3 t)$. Using the initial condition $s=25 \mathrm{~m}$ at $t=5 \mathrm{~s}$,

$$
\begin{aligned}
& \int_{25 \mathrm{~m}}^{s} d s=\int_{5 \mathrm{~s}}^{t} \frac{1}{2}(45-3 t) d t \\
& s-25=\frac{45}{2} t-\frac{3}{4} t^{2}-93.75 \\
& s=\left\{\frac{1}{4}\left(90 t-3 t^{2}-275\right)\right\} \mathrm{m}
\end{aligned}
$$

Ans.
At $t=15 \mathrm{~s}$,

$$
s=\frac{1}{4}\left[90(15)-3\left(15^{2}\right)-275\right]=100 \mathrm{~m}
$$

Ans.
Thus the average speed is

$$
v_{\mathrm{avg}}=\frac{s_{T}}{t}=\frac{100 \mathrm{~m}}{15 \mathrm{~s}}=6.67 \mathrm{~m} / \mathrm{s}
$$

Ans.
using these results, the $s-t$ graph shown in Fig. a can be plotted.

12-54. Continued

$\boldsymbol{a}-\boldsymbol{t}$ Graph. The $a-t$ function can be determined using $a=\frac{d v}{d t}$.
For $0 \leq t<5 \mathrm{~s}, \quad a=\frac{d\left(0.6 t^{2}\right)}{d t}=\{1.2 t\} \mathrm{m} / \mathrm{s}^{2}$
At $t=5 \mathrm{~s}, \quad a=1.2(5)=6 \mathrm{~m} / \mathrm{s}^{2}$
For $5 \mathrm{~s}<t \leq 15 \mathrm{~s}, \quad a=\frac{d\left[\frac{1}{2}(45-3 t)\right]}{d t}=-1.5 \mathrm{~m} / \mathrm{s}^{2}$

Ans.

Ans.

Ans.

Ans:
For $0 \leq t<5 \mathrm{~s}$,
$s=\left\{0.2 t^{3}\right\} \mathrm{m}$
$a=\{1.2 t\} \mathrm{m} / \mathrm{s}^{2}$
For $5 \mathrm{~s}<t \leq 15 \mathrm{~s}$,
$s=\left\{\frac{1}{4}\left(90 t-3 t^{2}-275\right)\right\} \mathrm{m}$
$a=-1.5 \mathrm{~m} / \mathrm{s}^{2}$
At $t=15 \mathrm{~s}$,
$s=100 \mathrm{~m}$
$v_{\text {avg }}=6.67 \mathrm{~m} / \mathrm{s}$

12-55.

An airplane lands on the straight runway, originally traveling at $110 \mathrm{ft} / \mathrm{s}$ when $s=0$. If it is subjected to the decelerations shown, determine the time t^{\prime} needed to stop the plane and construct the $s-t$ graph for the motion.

SOLUTION

$v_{0}=110 \mathrm{ft} / \mathrm{s}$
$\Delta v=\int a d t$
$0-110=-3(15-5)-8(20-15)-3\left(t^{\prime}-20\right)$
$t^{\prime}=33.3 \mathrm{~s}$
$\left.s\right|_{t=5 \mathrm{~s}}=550 \mathrm{ft}$
$s_{t=15 \mathrm{~s}}=1500 \mathrm{ft}$
$s_{t=20 \mathrm{~s}}=1800 \mathrm{ft}$
$s_{t=33.3 \mathrm{~s}}=2067 \mathrm{ft}$

Ans.

Ans:

$t^{\prime}=33.3 \mathrm{~s}$
$\left.s\right|_{t=5 \mathrm{~s}}=550 \mathrm{ft}$
$\left.s\right|_{t=15 \mathrm{~s}}=1500 \mathrm{ft}$
$\left.s\right|_{t=20 \mathrm{~s}}=1800 \mathrm{ft}$
$\left.s\right|_{t=33.3 \mathrm{~s}}=2067 \mathrm{ft}$

*12-56.

Starting from rest at $s=0$, a boat travels in a straight line with the acceleration shown by the $a-s$ graph. Determine the boat's speed when $s=50 \mathrm{ft}, 100 \mathrm{ft}$, and 150 ft .

SOLUTION

$v-\boldsymbol{s}$ Function. The $v-s$ function can be determined by integrating $v d v=a d s$.
For $0 \leq s<100 \mathrm{ft}, \frac{a-8}{s-0}=\frac{6-8}{100-0}, a=\left\{-\frac{1}{50} s+8\right\} \mathrm{ft} / \mathrm{s}^{2}$. Using the initial condition $v-0$ at $s=0$,

$$
\begin{aligned}
& \int_{0}^{v} v d v=\int_{0}^{s}\left(-\frac{1}{50} s+8\right) d s \\
& \left.\frac{v^{2}}{2}\right|_{0} ^{v}=\left.\left(-\frac{1}{100} s^{2}+8 s\right)\right|_{0} ^{s} \\
& \frac{v^{2}}{2}=8 s-\frac{1}{100} s^{2} \\
& v=\left\{\sqrt{\frac{1}{50}\left(800 s-s^{2}\right)}\right\} \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

At $s=50 \mathrm{ft}$,

$$
\left.v\right|_{s=50 \mathrm{ft}}=\sqrt{\frac{1}{50}\left[800(50)-50^{2}\right]}=27.39 \mathrm{ft} / \mathrm{s}=27.4 \mathrm{ft} / \mathrm{s}
$$

Ans.

At $s=100 \mathrm{ft}$,

$$
\left.v\right|_{s=100 \mathrm{ft}}=\sqrt{\frac{1}{50}\left[800(100)-100^{2}\right]}=37.42 \mathrm{ft} / \mathrm{s}=37.4 \mathrm{ft} / \mathrm{s}
$$

Ans.
For $100 \mathrm{ft}<s \leq 150 \mathrm{ft}, \frac{a-0}{s-150}=\frac{6-0}{100-150} ; a=\left\{-\frac{3}{25} s+18\right\} \mathrm{ft} / \mathrm{s}^{2}$. Using the initial condition $v=37.42 \mathrm{ft} / \mathrm{s}$ at $s=100 \mathrm{ft}$,

$$
\begin{aligned}
& \int_{37.42 \mathrm{ft} / \mathrm{s}}^{v} v d v=\int_{100 \mathrm{ft}}^{s}\left(-\frac{3}{25} s+18\right) d s \\
& \left.\frac{v^{2}}{2}\right|_{37.42 \mathrm{ft} / \mathrm{s}} ^{v}=\left.\left(-\frac{3}{50} s^{2}+18 s\right)\right|_{100 \mathrm{ft}} ^{s} \\
& v=\left\{\frac{1}{5} \sqrt{-3 s^{2}+900 s-25000}\right\} \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

At $s=150 \mathrm{ft}$
$\left.v\right|_{s=150 \mathrm{ft}}=\frac{1}{5} \sqrt{-3\left(150^{2}\right)+900(150)-25000}=41.23 \mathrm{ft} / \mathrm{s}=41.2 \mathrm{ft} / \mathrm{s}$
Ans.

Ans:

$\left.v\right|_{s=50 \mathrm{ft}}=27.4 \mathrm{ft} / \mathrm{s}$
$\left.v\right|_{s=100 \mathrm{ft}}=37.4 \mathrm{ft} / \mathrm{s}$
$\left.v\right|_{s=150 \mathrm{ft}}=41.2 \mathrm{ft} / \mathrm{s}$

12-57.

Starting from rest at $s=0$, a boat travels in a straight line with the acceleration shown by the $a-s$ graph. Construct the $v-s$ graph.

SOLUTION

$v-\boldsymbol{s}$ Graph. The $v-s$ function can be determined by integrating $v d v=a d s$. For
$0 \leq s<100 \mathrm{ft}, \quad \frac{a-8}{s-0}=\frac{6-8}{100-0}, \quad a=\left\{-\frac{1}{50} s+8\right\} \mathrm{ft} / \mathrm{s}^{2} \quad$ using the initial condition $v=0$ at $s=0$,

$$
\begin{aligned}
& \int_{0}^{v} v d v=\int_{0}^{s}\left(-\frac{1}{50} s+8\right) d s \\
& \left.\frac{v^{2}}{2}\right|_{0}=\left.\left(-\frac{1}{100} s^{2}+8 s\right)\right|_{0} ^{s} \\
& \frac{v^{2}}{2}=8 s-\frac{1}{100} s^{2} \\
& v=\left\{\sqrt{\frac{1}{50}\left(800 s-s^{2}\right)}\right\} \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

At $s=25 \mathrm{ft}, 50 \mathrm{ft}, 75 \mathrm{ft}$ and 100 ft

$$
\begin{aligned}
& \left.v\right|_{s=25 \mathrm{ft}}=\sqrt{\frac{1}{50}\left[800(25)-25^{2}\right]}=19.69 \mathrm{ft} / \mathrm{s} \\
& \left.v\right|_{s=50 \mathrm{ft}}=\sqrt{\frac{1}{50}\left[800(50)-50^{2}\right]}=27.39 \mathrm{ft} / \mathrm{s} \\
& \left.v\right|_{s=75 \mathrm{ft}}=\sqrt{\frac{1}{50}\left[800(75)-75^{2}\right]}=32.98 \mathrm{ft} / \mathrm{s} \\
& \left.v\right|_{s=100 \mathrm{ft}}=\sqrt{\frac{1}{50}\left[800(100)-100^{2}\right]}=37.42 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

For $100 \mathrm{ft}<s \leq 150 \mathrm{ft}, \frac{a-0}{s-150}=\frac{6-0}{100-150} ; a=\left\{-\frac{3}{25} s+18\right\} \mathrm{ft} / \mathrm{s}^{2}$ using the
initial condition $v=37.42 \mathrm{ft} / \mathrm{s}$ at $s=100 \mathrm{ft}$,

$$
\begin{aligned}
& \int_{37.42 \mathrm{ft} / \mathrm{s}}^{v} v d v=\int_{100 \mathrm{ft}}^{s}\left(-\frac{3}{25} s+18\right) d s \\
& \left.\frac{v^{2}}{2}\right|_{37.42 \mathrm{ft} / \mathrm{s}} ^{v}=\left.\left(-\frac{3}{50} s^{2}+18 s\right)\right|_{100 \mathrm{ft}} ^{s} \\
& v=\left\{\frac{1}{5} \sqrt{-3 s^{2}+900 s-25000}\right\} \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

At $s=125 \mathrm{ft}$ and $s=150 \mathrm{ft}$

$$
\begin{aligned}
& \left.v\right|_{s=125 \mathrm{ft}}=\frac{1}{5} \sqrt{-3\left(125^{2}\right)+900(125)-25000}=40.31 \mathrm{ft} / \mathrm{s} \\
& \left.v\right|_{s=150 \mathrm{ft}}=\frac{1}{5} \sqrt{-3\left(150^{2}\right)+900(150)-25000}=41.23 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

Ans:

For $0 \leq s<100 \mathrm{ft}$,
$v=\left\{\sqrt{\frac{1}{50}\left(800 s-s^{2}\right)}\right\} \mathrm{ft} / \mathrm{s}$
For $100 \mathrm{ft}<s \leq 150 \mathrm{ft}$,
$v=\left\{\frac{1}{5} \sqrt{-3 s^{2}+900 s-25000}\right\} \mathrm{ft} / \mathrm{s}$

12-58.

A two-stage rocket is fired vertically from rest with the acceleration shown. After 15 s the first stage A burns out and the second stage B ignites. Plot the $v-t$ and $s-t$ graphs which describe the motion of the second stage for $0 \leq t \leq 40 \mathrm{~s}$.

SOLUTION

For $0 \leq t<15$
$a=t$
$\int_{0}^{v} d v=\int_{0}^{t} t d t$
$v=\frac{1}{2} t^{2}$
$v=112.5$ when $t=15 \mathrm{~s}$
$\int_{0}^{s} d s=\int_{0}^{t} \frac{1}{2} t^{2} d t$
$s=\frac{1}{6} t^{3}$
$s=562.5$ when $t=15 \mathrm{~s}$
For $15<t<40$
$a=20$
$\int_{112.5}^{v} d v=\int_{1.5}^{t} 20 d t$
$v=20 t-187.5$
$v=612.5$ when $t=40 \mathrm{~s}$
$\int_{562.5}^{s} d s=\int_{15}^{t}(20 t-187.5) d t$
$s=10 t^{2}-187.5 t+1125$
$s=9625$ when $t=40 \mathrm{~s}$

12-59.

The speed of a train during the first minute has been recorded as follows:

$t(\mathrm{~s})$	0	20	40	60
$v(\mathrm{~m} / \mathrm{s})$	0	16	21	24

Plot the $v-t$ graph, approximating the curve as straight-line segments between the given points. Determine the total distance traveled.

SOLUTION

The total distance traveled is equal to the area under the graph.
$s_{T}=\frac{1}{2}(20)(16)+\frac{1}{2}(40-20)(16+21)+\frac{1}{2}(60-40)(21+24)=980 \mathrm{~m} \quad$ Ans.

[^0]
*12-60.

A man riding upward in a freight elevator accidentally drops a package off the elevator when it is 100 ft from the ground. If the elevator maintains a constant upward speed of $4 \mathrm{ft} / \mathrm{s}$, determine how high the elevator is from the ground the instant the package hits the ground. Draw the $v-t$ curve for the package during the time it is in motion. Assume that the package was released with the same upward speed as the elevator.

SOLUTION

For package:

$$
\begin{aligned}
&(+\uparrow) \quad v^{2} \\
&=v_{0}^{2}+2 a_{c}\left(s_{2}-s_{0}\right) \\
& v^{2} \\
&=(4)^{2}+2(-32.2)(0-100) \\
& v=80.35 \mathrm{ft} / \mathrm{s} \downarrow \\
&(+\uparrow) \quad v=v_{0}+a_{c} t \\
&-80.35=4+(-32.2) t \\
& t=2.620 \mathrm{~s}
\end{aligned}
$$

For elevator:

$$
\begin{aligned}
& (+\uparrow) \quad s_{2}=s_{0}+v t \\
& s=100+4(2.620) \\
& s=110 \mathrm{ft}
\end{aligned}
$$

Ans.

Ans:

$s=110 \mathrm{ft}$

12-61.

Two cars start from rest side by side and travel along a straight road. Car A accelerates at $4 \mathrm{~m} / \mathrm{s}^{2}$ for 10 s and then maintains a constant speed. Car B accelerates at $5 \mathrm{~m} / \mathrm{s}^{2}$ until reaching a constant speed of $25 \mathrm{~m} / \mathrm{s}$ and then maintains this speed. Construct the $a-t, v-t$, and $s-t$ graphs for each car until $t=15 \mathrm{~s}$. What is the distance between the two cars when $t=15 \mathrm{~s}$?

SOLUTION

Car A :
$v=v_{0}+a_{c} t$
$v_{A}=0+4 t$
At $t=10 \mathrm{~s}, \quad v_{A}=40 \mathrm{~m} / \mathrm{s}$
$s=s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2}$

$s_{A}=0+0+\frac{1}{2}(4) t^{2}=2 t^{2}$

At $t=10 \mathrm{~s}, \quad s_{A}=200 \mathrm{~m}$
$t>10 \mathrm{~s}, \quad d s=v d t$

$$
\begin{aligned}
\int_{200}^{s_{A}} d s & =\int_{10}^{t} 40 d t \\
s_{A} & =40 t-200
\end{aligned}
$$

At $t=15 \mathrm{~s}, \quad s_{A}=400 \mathrm{~m}$
Car B:

$$
\begin{aligned}
& v=v_{0}+a_{c} t \\
& v_{B}=0+5 t
\end{aligned}
$$

When $v_{B}=25 \mathrm{~m} / \mathrm{s}, \quad t=\frac{25}{5}=5 \mathrm{~s}$

$$
\begin{aligned}
s & =s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2} \\
s_{B} & =0+0+\frac{1}{2}(5) t^{2}=2.5 t^{2}
\end{aligned}
$$

When $t=10 \mathrm{~s}, v_{A}=\left(v_{A}\right)_{\max }=40 \mathrm{~m} / \mathrm{s}$ and $s_{A}=200 \mathrm{~m}$.
When $t=5 \mathrm{~s}, s_{B}=62.5 \mathrm{~m}$.
When $t=15 \mathrm{~s}, s_{A}=400 \mathrm{~m}$ and $s_{B}=312.5 \mathrm{~m}$.

12-61. Continued

At $t=5 \mathrm{~s}, \quad s_{B}=62.5 \mathrm{~m}$

$$
t>5 \mathrm{~s}, \quad d s=v d t
$$

$$
\int_{62.5}^{s_{B}} d s=\int_{5}^{t} 25 d t
$$

$$
s_{B}-62.5=25 t-125
$$

$$
s_{B}=25 t-62.5
$$

When $t=15 \mathrm{~s}, \quad s_{B}=312.5$

Distance between the cars is
$\Delta s=s_{A}-s_{B}=400-312.5=87.5 \mathrm{~m}$
$\operatorname{Car} A$ is ahead of car B.

Ans.

Ans:
When $t=5 \mathrm{~s}$,
$s_{B}=62.5 \mathrm{~m}$.
When $t=10 \mathrm{~s}$,
$v_{A}=\left(v_{A}\right)_{\max }=40 \mathrm{~m} / \mathrm{s}$ and $s_{A}=200 \mathrm{~m}$.
When $t=15 \mathrm{~s}$,
$s_{A}=400 \mathrm{~m}$ and $s_{B}=312.5 \mathrm{~m}$.
$\Delta s=s_{A}-s_{B}=87.5 \mathrm{~m}$

12-62.

If the position of a particle is defined as $s=\left(5 t-3 t^{2}\right) \mathrm{ft}$, where t is in seconds, construct the $s-t, v-t$, and $a-t$ graphs for $0 \leq t \leq 10 \mathrm{~s}$.

SOLUTION

Ans:

$v=\{5-6 t\} \mathrm{ft} / \mathrm{s}$
$a=-6 \mathrm{ft} / \mathrm{s}^{2}$

12-63.

From experimental data, the motion of a jet plane while traveling along a runway is defined by the $\nu-t$ graph. Construct the $s-t$ and $a-t$ graphs for the motion. When $t=0, s=0$.

SOLUTION

$\boldsymbol{s}-\boldsymbol{t}$ Graph: The position in terms of time t can be obtained by applying $v=\frac{d s}{d t}$. For time interval $\mathbf{0} \mathbf{s} \leq \boldsymbol{t}<\mathbf{5} \mathbf{s}, v=\frac{20}{5} t=(4 t) \mathrm{m} / \mathrm{s}$.

$$
\begin{gathered}
d s=v d t \\
\int_{0}^{s} d s=\int_{0}^{t} 4 t d t \\
s=\left(2 t^{2}\right) \mathrm{m}
\end{gathered}
$$

When $t=5 \mathrm{~s}, \quad s=2\left(5^{2}\right)=50 \mathrm{~m}$,
For time interval $5 \mathbf{s}<\boldsymbol{t}<\mathbf{2 0} \mathbf{s}$,

$$
\begin{gathered}
d s=v d t \\
\int_{50 \mathrm{~m}}^{s} d s=\int_{5 \mathrm{a}}^{t} 20 d t \\
s=(20 t-50) \mathrm{m}
\end{gathered}
$$

When $t=20 \mathrm{~s}$,

$$
s=20(20)-50=350 \mathrm{~m}
$$

For time interval $20 \mathbf{s}<\boldsymbol{t} \leq \mathbf{3 0} \mathbf{s}, \frac{\boldsymbol{v}-20}{t-20}=\frac{60-20}{30-20}, \boldsymbol{v}=(4 t-60) \mathrm{m} / \mathrm{s}$.

$$
\begin{gathered}
d s=v d t \\
\int_{350 \mathrm{~m}}^{s} d s=\int_{20 \mathrm{a}}^{t}(4 t-60) d t \\
s=\left(2 t^{2}-60 t+750\right) \mathrm{m}
\end{gathered}
$$

When $t=30 \mathrm{~s}, \quad s=2\left(30^{2}\right)-60(30)+750=750 \mathrm{~m}$
$\boldsymbol{a}-\boldsymbol{t}$ Graph: The acceleration function in terms of time t can be obtained by applying $a=\frac{d v}{d t}$. For time interval $0 \mathbf{s} \leq \boldsymbol{t}<\mathbf{5} \mathbf{s}, 5 \mathbf{s}<\boldsymbol{t}<\mathbf{2 0} \mathbf{s}$ and $20 \mathbf{s}<t \leq 30 \mathbf{s}, \quad a=\frac{d v}{d t}=4.00 \mathrm{~m} / \mathrm{s}^{2}, \quad a=\frac{d v}{d t}=0 \quad$ and $\quad a=\frac{d v}{d t}=4.00 \mathrm{~m} / \mathrm{s}^{2}$, respectively.

Ans:

For $0 \leq t<5 \mathrm{~s}$,
$s=\left\{2 t^{2}\right\} \mathrm{m}$ and $a=4 \mathrm{~m} / \mathrm{s}^{2}$.
For $5 \mathrm{~s}<t<20 \mathrm{~s}$,
$s=\{20 t-50\} \mathrm{m}$ and $a=0$.
For $20 \mathrm{~s}<t \leq 30 \mathrm{~s}$,
$s=\left\{2 t^{2}-60 t+750\right\} \mathrm{m}$ and $a=4 \mathrm{~m} / \mathrm{s}^{2}$.
*12-64.
The motion of a train is described by the $a-s$ graph shown.
Draw the $v-s$ graph if $v=0$ at $s=0$.

SOLUTION

$v-\boldsymbol{s}$ Graph. The $v-s$ function can be determined by integrating $v d v=a d s$.
For $0 \leq s<300 \mathrm{~m}, a=\left(\frac{3}{300}\right) s=\left(\frac{1}{100} s\right) \mathrm{m} / \mathrm{s}^{2}$. Using the initial condition $v=0$ at $s=0$,

$$
\begin{aligned}
& \int_{0}^{v} v d v=\int_{0}^{s}\left(\frac{1}{100} s\right) d s \\
& \frac{v^{2}}{2}=\frac{1}{200} s^{2} \\
& v=\left\{\frac{1}{10} s\right\} \mathrm{m} / \mathrm{s}
\end{aligned}
$$

Ans.

At $s=300 \mathrm{~m}$,

$$
\left.v\right|_{s=300 \mathrm{~m}}=\frac{1}{10}(300)=30 \mathrm{~m} / \mathrm{s}
$$

For $300 \mathrm{~m}<s \leq 600 \mathrm{~m}, \frac{a-3}{s-300}=\frac{0-3}{600-300} ; a=\left\{-\frac{1}{100} s+6\right\} \mathrm{m} / \mathrm{s}^{2}$, using the initial condition $v=30 \mathrm{~m} / \mathrm{s}$ at $s=300 \mathrm{~m}$,

$$
\begin{aligned}
& \int_{30 \mathrm{~m} / \mathrm{s}}^{v} v d v=\int_{300 \mathrm{~m}}^{s}\left(-\frac{1}{100} s+6\right) d s \\
& \left.\frac{v^{2}}{2}\right|_{30 \mathrm{~m} / \mathrm{s}} ^{v}=\left.\left(-\frac{1}{200} s^{2}+6 s\right)\right|_{300 \mathrm{~m}} ^{s} \\
& \frac{v^{2}}{2}-450=6 s-\frac{1}{200} s^{2}-1350 \\
& v=\left\{\sqrt{12 s-\frac{1}{100} s^{2}-1800}\right\} \mathrm{m} / \mathrm{s}
\end{aligned}
$$

Ans.

At $s=600 \mathrm{~m}$,

$$
v=\sqrt{12(600)-\frac{1}{100}\left(600^{2}\right)-1800}=42.43 \mathrm{~m} / \mathrm{s}
$$

Using these results, the $v-s$ graph shown in Fig. a can be plotted.

Ans:
$v=\left\{\frac{1}{10} s\right\} \mathrm{m} / \mathrm{s}$

12-65.

The jet plane starts from rest at $s=0$ and is subjected to the acceleration shown. Determine the speed of the plane when it has traveled 1000 ft . Also, how much time is required for it to travel 1000 ft ?

SOLUTION

$v-\boldsymbol{s}$ Function. Here, $\frac{a-75}{s-0}=\frac{50-75}{1000-0} ; a=\{75-0.025 s\} \mathrm{ft} / \mathrm{s}^{2}$. The function $v_{(s)}$ can be determined by integrating $v d v=a d s$. Using the initial condition $v=0$ at $s=0$,

$$
\begin{aligned}
& \int_{0}^{v} v d v=\int_{0}^{s}(75-0.025 s) d s \\
& \frac{v^{2}}{2}=75 s-0.0125 s^{2} \\
& v=\left\{\sqrt{150 s-0.025 s^{2}}\right\} \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

At $s=1000 \mathrm{ft}$,

$$
\begin{aligned}
v & =\sqrt{150(1000)-0.025\left(1000^{2}\right)} \\
& =353.55 \mathrm{ft} / \mathrm{s}=354 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

Ans.

Time. t as a function of s can be determined by integrating $d t=\frac{d s}{v}$. Using the initial condition $s=0$ at $t=0$;

$$
\begin{aligned}
\int_{0}^{t} d t & =\int_{0}^{s} \frac{d s}{\sqrt{150 s-0.025 s^{2}}} \\
t & =\left.\left[-\frac{1}{\sqrt{0.025}} \sin ^{-1}\left(\frac{150-0.05 s}{150}\right)\right]\right|_{0} ^{s} \\
t & =\frac{1}{\sqrt{0.025}}\left[\frac{\pi}{2}-\sin ^{-1}\left(\frac{150-0.05 s}{150}\right)\right]
\end{aligned}
$$

At $s=1000 \mathrm{ft}$,

$$
\begin{aligned}
t & =\frac{1}{\sqrt{0.025}}\left\{\frac{\pi}{2}-\sin ^{-1}\left[\frac{150-0.05(1000)}{150}\right]\right\} \\
& =5.319 \mathrm{~s}=5.32 \mathrm{~s}
\end{aligned}
$$

Ans.

Ans:
$v=354 \mathrm{ft} / \mathrm{s}$
$t=5.32 \mathrm{~s}$

12-66.

The boat travels along a straight line with the speed described by the graph. Construct the $s-t$ and $a-s$ graphs. Also, determine the time required for the boat to travel a distance $s=400 \mathrm{~m}$ if $s=0$ when $t=0$.

SOLUTION

$\boldsymbol{s}-\boldsymbol{t}$ Graph: For $0 \leq s<100 \mathrm{~m}$, the initial condition is $s=0$ when $t=0 \mathrm{~s}$.

$$
\begin{aligned}
& (\pm) \quad d t=\frac{d s}{v} \\
& \int_{0}^{t} d t=\int_{0}^{s} \frac{d s}{2 s^{1 / 2}} \\
& t=s^{1 / 2} \\
& \\
& s=\left(t^{2}\right) \mathrm{m}
\end{aligned}
$$

When $s=100 \mathrm{~m}$,

$$
100=t^{2} \quad t=10 \mathrm{~s}
$$

For $100 \mathrm{~m}<s \leq 400 \mathrm{~m}$, the initial condition is $s=100 \mathrm{~m}$ when $t=10 \mathrm{~s}$.

$$
\begin{aligned}
(\xrightarrow{ \pm}) & d t=\frac{d s}{v} \\
\int_{10 \mathrm{~s}}^{t} d t & =\int_{100 \mathrm{~m}}^{s} \frac{d s}{0.2 s} \\
t-10 & =5 \ln \frac{s}{100} \\
\frac{t}{5}-2 & =\ln \frac{s}{100} \\
e^{t / 5-2} & =\frac{s}{100} \\
\frac{e^{t / 5}}{e^{2}} & =\frac{s}{100} \\
s & =\left(13.53 e^{t / 5}\right) \mathrm{m}
\end{aligned}
$$

When $s=400 \mathrm{~m}$,

$$
\begin{aligned}
& 400=13.53 e^{t / 5} \\
& t=16.93 \mathrm{~s}=16.9 \mathrm{~s}
\end{aligned}
$$

The $s-t$ graph is shown in Fig. a.
$\boldsymbol{a}-\boldsymbol{s}$ Graph: For $0 \mathrm{~m} \leq s<100 \mathrm{~m}$,

$$
a=v \frac{d v}{d s}=\left(2 s^{1 / 2}\right)\left(s^{-1 / 2}\right)=2 \mathrm{~m} / \mathrm{s}^{2}
$$

For $100 \mathrm{~m}<s \leq 400 \mathrm{~m}$,

$$
a=v \frac{d v}{d s}=(0.2 s)(0.2)=0.04 s
$$

When $s=100 \mathrm{~m}$ and 400 m ,

$$
\begin{aligned}
& \left.a\right|_{s=100 \mathrm{~m}}=0.04(100)=4 \mathrm{~m} / \mathrm{s}^{2} \\
& \left.a\right|_{s=400 \mathrm{~m}}=0.04(400)=16 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

The $a-s$ graph is shown in Fig. b.

(a)

Ans.

(b)

Ans:

When $s=100 \mathrm{~m}$,
$t=10 \mathrm{~s}$.
When $s=400 \mathrm{~m}$,
$t=16.9 \mathrm{~s}$.
$\left.a\right|_{s=100 \mathrm{~m}}=4 \mathrm{~m} / \mathrm{s}^{2}$
$\left.a\right|_{s=400 \mathrm{~m}}=16 \mathrm{~m} / \mathrm{s}^{2}$

12-67.

The $v-s$ graph of a cyclist traveling along a straight road is shown. Construct the $a-s$ graph.

SOLUTION

$\boldsymbol{a}-\boldsymbol{s}$ Graph: For $0 \leq s<100 \mathrm{ft}$,

$$
(\xrightarrow{+}) \quad a=v \frac{d v}{d s}=(0.1 s+5)(0.1)=(0.01 s+0.5) \mathrm{ft} / \mathrm{s}^{2}
$$

Thus at $s=0$ and 100 ft

$$
\begin{aligned}
& \left.a\right|_{s=0}=0.01(0)+0.5=0.5 \mathrm{ft} / \mathrm{s}^{2} \\
& \left.a\right|_{s=100 \mathrm{ft}}=0.01(100)+0.5=1.5 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

For $100 \mathrm{ft}<s \leq 350 \mathrm{ft}$,

$$
(\xrightarrow{+}) \quad a=v \frac{d v}{d s}=(-0.04 s+19)(-0.04)=(0.0016 s-0.76) \mathrm{ft} / \mathrm{s}^{2}
$$

Thus at $s=100 \mathrm{ft}$ and 350 ft

$$
\begin{aligned}
& \left.a\right|_{s=100 \mathrm{ft}}=0.0016(100)-0.76=-0.6 \mathrm{ft} / \mathrm{s}^{2} \\
& \left.a\right|_{s=350 \mathrm{ft}}=0.0016(350)-0.76=-0.2 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

The $a-s$ graph is shown in Fig. a.

Thus at $s=0$ and 100 ft

$$
\begin{aligned}
& \left.a\right|_{s=0}=0.01(0)+0.5=0.5 \mathrm{ft} / \mathrm{s}^{2} \\
& \left.a\right|_{s=100 \mathrm{ft}}=0.01(100)+0.5=1.5 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

At $s=100 \mathrm{ft}, a$ changes from $a_{\max }=1.5 \mathrm{ft} / \mathrm{s}^{2}$ to $a_{\min }=-0.6 \mathrm{ft} / \mathrm{s}^{2}$.

Ans:

At $s=100 \mathrm{~s}$,
a changes from $a_{\text {max }}=1.5 \mathrm{ft} / \mathrm{s}^{2}$ to $a_{\min }=-0.6 \mathrm{ft} / \mathrm{s}^{2}$.

*12-68.

The $v-s$ graph for a test vehicle is shown. Determine its acceleration when $s=100 \mathrm{~m}$ and when $s=175 \mathrm{~m}$.

SOLUTION

$$
\begin{aligned}
& 0 \leq s \leq 150 \mathrm{~m}: \quad \nu=\frac{1}{3} s, \\
& d \nu=\frac{1}{3} d s \\
& \nu d \nu=a d s \\
& \frac{1}{3} s\left(\frac{1}{3} d s\right)=a d s \\
& a=\frac{1}{9} s \\
& \text { At } s=100 \mathrm{~m}, \quad \begin{aligned}
a & =\frac{1}{9}(100)=11.1 \mathrm{~m} / \mathrm{s}^{2} \\
150 \leq s \leq 200 \mathrm{~m} ; \quad & =200-s, \\
d \nu & =-d s \\
\nu d \nu & =a d s \\
(200-s)(-d s) & =a d s \\
a & =s-200
\end{aligned}
\end{aligned}
$$

At $s=175 \mathrm{~m}, \quad a=175-200=-25 \mathrm{~m} / \mathrm{s}^{2}$

Ans.

Ans.

Ans:
At $s=100 \mathrm{~s}, \quad a=11.1 \mathrm{~m} / \mathrm{s}^{2}$
At $s=175 \mathrm{~m}, \quad a=-25 \mathrm{~m} / \mathrm{s}^{2}$

12-69.

If the velocity of a particle is defined as $\mathbf{v}(t)=\left\{0.8 t^{2} \mathbf{i}+\right.$ $\left.12 t^{1 / 2} \mathbf{j}+5 \mathbf{k}\right\} \mathrm{m} / \mathrm{s}$, determine the magnitude and coordinate direction angles α, β, γ of the particle's acceleration when $t=2 \mathrm{~s}$.

SOLUTION

$\mathbf{v}(t)=0.8 t^{2} \mathbf{i}+12 t^{1 / 2} \mathbf{j}+5 \mathbf{k}$
$\mathbf{a}=\frac{d v}{d t}=1.6 \mathbf{i}+6 t^{1 / 2} \mathbf{j}$
When $t=2 \mathrm{~s}, \quad \mathbf{a}=3.2 \mathbf{i}+4.243 \mathbf{j}$
$a=\sqrt{(3.2)^{2}+(4.243)^{2}}=5.31 \mathrm{~m} / \mathrm{s}^{2}$
$u_{o}=\frac{\mathbf{a}}{a}=0.6022 \mathbf{i}+0.7984 \mathbf{j}$
$\alpha=\cos ^{-1}(0.6022)=53.0^{\circ}$
$\beta=\cos ^{-1}(0.7984)=37.0^{\circ}$
$\gamma=\cos ^{-1}(0)=90.0^{\circ}$

Ans.

Ans.

Ans.

Ans.

Ans:
$a=5.31 \mathrm{~m} / \mathrm{s}^{2}$
$\alpha=53.0^{\circ}$
$\beta=37.0^{\circ}$
$\gamma=90.0^{\circ}$

12-70.

The velocity of a particle is $\mathbf{v}=\{3 \mathbf{i}+(6-2 t) \mathbf{j}\} \mathrm{m} / \mathrm{s}$, where t is in seconds. If $\mathbf{r}=\mathbf{0}$ when $t=0$, determine the displacement of the particle during the time interval $t=1 \mathrm{~s}$ to $t=3 \mathrm{~s}$.

SOLUTION

Position: The position \mathbf{r} of the particle can be determined by integrating the kinematic equation $d \mathbf{r}=\boldsymbol{v} d t$ using the initial condition $\mathbf{r}=\mathbf{0}$ at $t=0$ as the integration limit. Thus,

$$
\begin{aligned}
& d \mathbf{r}=\boldsymbol{v} d t \\
& \int_{0}^{\mathbf{r}} d \mathbf{r}=\int_{0}^{t}[3 \mathbf{i}+(6-2 t) \mathbf{j}] d t \\
& \mathbf{r}=\left[3 t \mathbf{i}+\left(6 t-t^{2}\right) \mathbf{j}\right] \mathrm{m}
\end{aligned}
$$

When $t=1 \mathrm{~s}$ and 3 s ,

$$
\begin{aligned}
& \left.r\right|_{t=1 \mathrm{~s}}=3(1) \mathbf{i}+\left[6(1)-1^{2}\right] \mathbf{j}=[3 \mathbf{i}+5 \mathbf{j}] \mathrm{m} / \mathrm{s} \\
& \left.r\right|_{t=3 \mathrm{~s}}=3(3) \mathbf{i}+\left[6(3)-3^{2}\right] \mathbf{j}=[9 \mathbf{i}+9 \mathbf{j}] \mathrm{m} / \mathrm{s}
\end{aligned}
$$

Thus, the displacement of the particle is

$$
\begin{aligned}
\Delta \mathbf{r} & =\mathbf{r}_{t=3 \mathrm{~s}}-\left.\mathbf{r}\right|_{t=1 \mathrm{~s}} \\
& =(9 \mathbf{i}+9 \mathbf{j})-(3 \mathbf{i}+5 \mathbf{j}) \\
& =\{\mathbf{i} \mathbf{i}+4 \mathbf{j}\} \mathrm{m}
\end{aligned}
$$

Ans.

12-71.

A particle, originally at rest and located at point ($3 \mathrm{ft}, 2 \mathrm{ft}, 5 \mathrm{ft}$),
is subjected to an acceleration of $\mathbf{a}=\left\{6 t \mathbf{i}+12 t^{2} \mathbf{k}\right\} \mathrm{ft} / \mathrm{s}^{2}$.
Determine the particle's position (x, y, z) at $t=1 \mathrm{~s}$.

SOLUTION

Velocity: The velocity expressed in Cartesian vector form can be obtained by applying Eq. 12-9.

$$
\begin{gathered}
d v=\mathrm{a} d t \\
\int_{0}^{v} d v=\int_{0}^{t}\left(6 t \mathbf{i}+12 t^{2} \mathbf{k}\right) d t \\
v=\left\{3 t^{2} \mathbf{i}+4 t^{3} \mathbf{k}\right\} \mathrm{ft} / \mathrm{s}
\end{gathered}
$$

Position: The position expressed in Cartesian vector form can be obtained by applying Eq. 12-7.

$$
\begin{gathered}
d r=\mathrm{v} d t \\
\int_{\mathrm{r}_{1}}^{\mathrm{r}} d r=\int_{0}^{t}\left(3 t^{2} \mathbf{i}+4 t^{3} \mathbf{k}\right) d t \\
\mathrm{r}-(3 \mathbf{i}+2 \mathbf{j}+5 \mathbf{k})=t^{3} \mathbf{i}+t^{4} \mathbf{k} \\
\mathrm{r}=\left\{\left(t^{3}+3\right) \mathbf{i}+2 \mathbf{j}+\left(t^{4}+5\right) \mathbf{k}\right\} \mathrm{ft}
\end{gathered}
$$

When $t=1 s, \mathrm{r}=\left(1^{3}+3\right) \mathbf{i}+2 \mathbf{j}+\left(1^{4}+5\right) \mathbf{k}=\{4 \mathbf{i}+2 \mathbf{j}+6 \mathbf{k}\} \mathrm{ft}$.
The coordinates of the particle are

$$
(4 \mathrm{ft}, 2 \mathrm{ft}, 6 \mathrm{ft})
$$

Ans.

Ans:

($4 \mathrm{ft}, 2 \mathrm{ft}, 6 \mathrm{ft}$)
*12-72.
The velocity of a particle is given by $\boldsymbol{v}=\left\{16 t^{2} \mathbf{i}+4 t^{3} \mathbf{j}+(5 t+2) \mathbf{k}\right\} \mathrm{m} / \mathrm{s}$, where t is in seconds. If the particle is at the origin when $t=0$, determine the magnitude of the particle's acceleration when $t=2 \mathrm{~s}$. Also, what is the x, y, z coordinate position of the particle at this instant?

SOLUTION

Acceleration: The acceleration expressed in Cartesian vector form can be obtained by applying Eq. 12-9.

$$
\mathbf{a}=\frac{d \boldsymbol{v}}{d t}=\left\{32 t \mathbf{i}+12 t^{2} \mathbf{j}+5 \mathbf{k}\right\} \mathrm{m} / \mathrm{s}^{2}
$$

When $t=2 \mathrm{~s}, \mathbf{a}=32(2) \mathbf{i}+12\left(2^{2}\right) \mathbf{j}+5 \mathbf{k}=\{64 \mathbf{i}+48 \mathbf{j}+5 \mathbf{k}\} \mathrm{m} / \mathrm{s}^{2}$. The magnitude of the acceleration is

$$
a=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}=\sqrt{64^{2}+48^{2}+5^{2}}=80.2 \mathrm{~m} / \mathrm{s}^{2}
$$

Ans.
Position: The position expressed in Cartesian vector form can be obtained by applying Eq. 12-7.

$$
\begin{gathered}
d \mathbf{r}=\boldsymbol{v} d t \\
\int_{0}^{\mathbf{r}} d \mathbf{r}=\int_{0}^{t}\left(16 t^{2} \mathbf{i}+4 t^{3} \mathbf{j}+(5 t+2) \mathbf{k}\right) d t \\
\mathbf{r}=\left[\frac{16}{3} t^{3} \mathbf{i}+t^{4} \mathbf{j}+\left(\frac{5}{2} t^{2}+2 t\right) \mathbf{k}\right] \mathrm{m}
\end{gathered}
$$

When $t=2 \mathrm{~s}$,

$$
\mathbf{r}=\frac{16}{3}\left(2^{3}\right) \mathbf{i}+\left(2^{4}\right) \mathbf{j}+\left[\frac{5}{2}\left(2^{2}\right)+2(2)\right] \mathbf{k}=\{42.7 \mathbf{i}+16.0 \mathbf{j}+14.0 \mathbf{k}\} \mathrm{m} .
$$

Thus, the coordinate of the particle is

$$
(42.7,16.0,14.0) \mathrm{m}
$$

Ans.

Ans:

(42.7, 16.0, 14.0) m

12-73.

The water sprinkler, positioned at the base of a hill, releases a stream of water with a velocity of $15 \mathrm{ft} / \mathrm{s}$ as shown. Determine the point $B(x, y)$ where the water strikes the ground on the hill. Assume that the hill is defined by the equation $y=\left(0.05 x^{2}\right) \mathrm{ft}$ and neglect the size of the sprinkler.

SOLUTION

$$
v_{x}=15 \cos 60^{\circ}=7.5 \mathrm{ft} / \mathrm{s} \quad v_{y}=15 \sin 60^{\circ}=12.99 \mathrm{ft} / \mathrm{s}
$$

$$
\begin{aligned}
(\stackrel{+}{\rightarrow}) s & =v_{0} t \\
x & =7.5 t
\end{aligned}
$$

$$
\begin{aligned}
(+\uparrow) s & =s_{o}+v_{o} t+\frac{1}{2} a_{c} t^{2} \\
y & =0+12.99 t+\frac{1}{2}(-32.2) t^{2} \\
y & =1.732 x-0.286 x^{2}
\end{aligned}
$$

Since $y=0.05 x^{2}$,
$0.05 x^{2}=1.732 x-0.286 x^{2}$
$x(0.336 x-1.732)=0$
$x=5.15 \mathrm{ft}$
$y=0.05(5.15)^{2}=1.33 \mathrm{ft}$
Also,

$$
\begin{aligned}
(\xrightarrow[\rightarrow]{+}) s & =v_{0} t \\
x & =15 \cos 60^{\circ} t \\
(+\uparrow) s & =s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2} \\
y & =0+15 \sin 60^{\circ} t+\frac{1}{2}(-32.2) t^{2}
\end{aligned}
$$

Since $y=0.05 x^{2}$

$$
12.99 t-16.1 t^{2}=2.8125 t^{2} \quad t=0.6869 \mathrm{~s}
$$

So that,
$x=15 \cos 60^{\circ}(0.6868)=5.15 \mathrm{ft}$
$y=0.05(5.15)^{2}=1.33 \mathrm{ft}$

Ans.
Ans.

Ans.
Ans.

Ans:

(5.15 ft, 1.33 ft)

12-74.

A particle, originally at rest and located at point ($3 \mathrm{ft}, 2 \mathrm{ft}, 5 \mathrm{ft}$),
is subjected to an acceleration $\mathbf{a}=\left\{6 t \mathbf{i}+12 t^{2} \mathbf{k}\right\} \mathrm{ft} / \mathrm{s}^{2}$.
Determine the particle's position (x, y, z) when $t=2 \mathrm{~s}$.

SOLUTION

$\mathbf{a}=6 t \mathbf{i}+12 t^{2} \mathbf{k}$
$\int_{0}^{v} d \mathbf{v}=\int_{0}^{t}\left(6 t \mathbf{i}+12 t^{2} \mathbf{k}\right) d t$
$\mathbf{v}=3 t^{2} \mathbf{i}+4 t^{3} \mathbf{k}$
$\int_{\mathrm{r}_{0}}^{\mathrm{r}} d \mathbf{r}=\int_{0}^{t}\left(3 t^{2} \mathbf{i}+4 t^{3} \mathbf{k}\right) d t$
$\mathbf{r}-(3 \mathbf{i}+2 \mathbf{j}+5 \mathbf{k})=t^{3} \mathbf{i}+t^{4} \mathbf{k}$
When $t=2 \mathrm{~s}$
$\mathbf{r}=\{11 \mathbf{i}+2 \mathbf{j}+21 \mathbf{k}\} \mathrm{ft}$

Ans.

Ans:

$$
\mathbf{r}=\{11 \mathbf{i}+2 \mathbf{j}+21 \mathbf{k}\} \mathrm{ft}
$$

12-75.

A particle travels along the curve from A to B in 2 s . It takes 4 s for it to go from B to C and then 3 s to go from C to D. Determine its average speed when it goes from A to D.

SOLUTION

Ans.

Ans:
$\left(v_{\text {sp }}\right)_{\text {avg }}=4.28 \mathrm{~m} / \mathrm{s}$
*12-76.
A particle travels along the curve from A to B in 5 s . It takes 8 s for it to go from B to C and then 10 s to go from C to A. Determine its average speed when it goes around the closed path.

SOLUTION

The total distance traveled is

$$
\begin{aligned}
S_{\text {Tot }} & =S_{A B}+S_{B C}+S_{C A} \\
& =20\left(\frac{\pi}{2}\right)+\sqrt{20^{2}+30^{2}}+(30+20) \\
& =117.47 \mathrm{~m}
\end{aligned}
$$

The total time taken is

$$
\begin{aligned}
t_{\mathrm{Tot}} & =t_{A B}+t_{B C}+t_{C A} \\
& =5+8+10 \\
& =23 \mathrm{~s}
\end{aligned}
$$

Thus, the average speed is
$\left(v_{\mathrm{sp}}\right)_{\mathrm{avg}}=\frac{S_{\text {Tot }}}{t_{\text {Tot }}}=\frac{117.47 \mathrm{~m}}{23 \mathrm{~s}}=5.107 \mathrm{~m} / \mathrm{s}=5.11 \mathrm{~m} / \mathrm{s}$

12-77.

The position of a crate sliding down a ramp is given by $x=\left(0.25 t^{3}\right) \mathrm{m}, y=\left(1.5 t^{2}\right) \mathrm{m}, z=\left(6-0.75 t^{5 / 2}\right) \mathrm{m}$, where t is in seconds. Determine the magnitude of the crate's velocity and acceleration when $t=2 \mathrm{~s}$.

SOLUTION

Velocity: By taking the time derivative of x, y, and z, we obtain the x, y, and z components of the crate's velocity.

$$
\begin{aligned}
& v_{x}=\dot{x}=\frac{d}{d t}\left(0.25 t^{3}\right)=\left(0.75 t^{2}\right) \mathrm{m} / \mathrm{s} \\
& v_{y}=\dot{y}=\frac{d}{d t}\left(1.5 t^{2}\right)=(3 t) \mathrm{m} / \mathrm{s} \\
& v_{z}=\dot{z}=\frac{d}{d t}\left(6-0.75 t^{5 / 2}\right)=\left(-1.875 t^{3 / 2}\right) \mathrm{m} / \mathrm{s}
\end{aligned}
$$

When $t=2 \mathrm{~s}$,
$v_{x}=0.75\left(2^{2}\right)=3 \mathrm{~m} / \mathrm{s} \quad v_{y}=3(2)=6 \mathrm{~m} / \mathrm{s} \quad v_{z}=-1.875(2)^{3 / 2}=-5.303 \mathrm{~m} / \mathrm{s}$
Thus, the magnitude of the crate's velocity is
$v=\sqrt{v_{x}{ }^{2}+v_{y}{ }^{2}+v_{z}^{2}}=\sqrt{3^{2}+6^{2}+(-5.303)^{2}}=8.551 \mathrm{ft} / \mathrm{s}=8.55 \mathrm{ft}$
Ans.

Acceleration: The x, y, and z components of the crate's acceleration can be obtained by taking the time derivative of the results of v_{x}, v_{y}, and v_{z}, respectively.

$$
\begin{aligned}
& a_{x}=\dot{v}_{x}=\frac{d}{d t}\left(0.75 t^{2}\right)=(1.5 t) \mathrm{m} / \mathrm{s}^{2} \\
& a_{y}=\dot{v}_{y}=\frac{d}{d t}(3 t)=3 \mathrm{~m} / \mathrm{s}^{2} \\
& a_{z}=\dot{v}_{z}=\frac{d}{d t}\left(-1.875 t^{3 / 2}\right)=\left(-2.815 t^{1 / 2}\right) \mathrm{m} / \mathrm{s}^{2}
\end{aligned}
$$

When $t=2 \mathrm{~s}$,
$a_{x}=1.5(2)=3 \mathrm{~m} / \mathrm{s}^{2} \quad a_{y}=3 \mathrm{~m} / \mathrm{s}^{2} \quad a_{z}=-2.8125\left(2^{1 / 2}\right)=-3.977 \mathrm{~m} / \mathrm{s}^{2}$
Thus, the magnitude of the crate's acceleration is $a=\sqrt{a_{x}{ }^{2}+a_{y}{ }^{2}+a_{z}{ }^{2}}=\sqrt{3^{2}+3^{2}+(-3.977)^{2}}=5.815 \mathrm{~m} / \mathrm{s}^{2}=5.82 \mathrm{~m} / \mathrm{s}$

Ans.

Ans:

$v=8.55 \mathrm{ft} / \mathrm{s}$
$a=5.82 \mathrm{~m} / \mathrm{s}^{2}$

12-78.

A rocket is fired from rest at $x=0$ and travels along a parabolic trajectory described by $y^{2}=\left[120\left(10^{3}\right) x\right] \mathrm{m}$. If the x component of acceleration is $a_{x}=\left(\frac{1}{4} t^{2}\right) \mathrm{m} / \mathrm{s}^{2}$, where t is in seconds, determine the magnitude of the rocket's velocity and acceleration when $t=10 \mathrm{~s}$.

SOLUTION

Position: The parameter equation of x can be determined by integrating a_{x} twice with respect to t.

$$
\begin{aligned}
& \int d v_{x}=\int a_{x} d t \\
& \int_{0}^{v_{x}} d v_{x}=\int_{0}^{t} \frac{1}{4} t^{2} d t \\
& v_{x}=\left(\frac{1}{12} t^{3}\right) \mathrm{m} / \mathrm{s} \\
& \int d x=\int v_{x} d t \\
& \int_{0}^{x} d x=\int_{0}^{t} \frac{1}{12} t^{3} d t \\
& x=\left(\frac{1}{48} t^{4}\right) \mathrm{m}
\end{aligned}
$$

Substituting the result of x into the equation of the path,

$$
\begin{aligned}
y^{2} & =120\left(10^{3}\right)\left(\frac{1}{48} t^{4}\right) \\
y & =\left(50 t^{2}\right) \mathrm{m}
\end{aligned}
$$

Velocity:

$$
v_{y}=\dot{y}=\frac{d}{d t}\left(50 t^{2}\right)=(100 t) \mathrm{m} / \mathrm{s}
$$

When $t=10 \mathrm{~s}$,

$$
v_{x}=\frac{1}{12}\left(10^{3}\right)=83.33 \mathrm{~m} / \mathrm{s} \quad v_{y}=100(10)=1000 \mathrm{~m} / \mathrm{s}
$$

Thus, the magnitude of the rocket's velocity is

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{83.33^{2}+1000^{2}}=1003 \mathrm{~m} / \mathrm{s}
$$

Ans.

Acceleration:

$$
a_{y}=\dot{v}_{y}=\frac{d}{d t}(100 t)=100 \mathrm{~m} / \mathrm{s}^{2}
$$

When $t=10 \mathrm{~s}$,

$$
a_{x}=\frac{1}{4}\left(10^{2}\right)=25 \mathrm{~m} / \mathrm{s}^{2}
$$

Thus, the magnitude of the rocket's acceleration is

$$
a=\sqrt{a_{x}{ }^{2}+a_{y}^{2}}=\sqrt{25^{2}+100^{2}}=103 \mathrm{~m} / \mathrm{s}^{2}
$$

Ans:

$v=1003 \mathrm{~m} / \mathrm{s}$
$a=103 \mathrm{~m} / \mathrm{s}^{2}$

12-79.

The particle travels along the path defined by the parabola $y=0.5 x^{2}$. If the component of velocity along the x axis is $v_{x}=(5 t) \mathrm{ft} / \mathrm{s}$, where t is in seconds, determine the particle's distance from the origin O and the magnitude of its acceleration when $t=1 \mathrm{~s}$. When $t=0, x=0, y=0$.

SOLUTION

Position: The x position of the particle can be obtained by applying the $v_{x}=\frac{d x}{d t}$.

$$
\begin{gathered}
d x=v_{x} d t \\
\int_{0}^{x} d x=\int_{0}^{t} 5 t d t \\
x=\left(2.50 t^{2}\right) \mathrm{ft}
\end{gathered}
$$

Thus, $y=0.5\left(2.50 t^{2}\right)^{2}=\left(3.125 t^{4}\right) \mathrm{ft}$. At $t=1 \mathrm{~s}, \quad x=2.5\left(1^{2}\right)=2.50 \mathrm{ft} \quad$ and $y=3.125\left(1^{4}\right)=3.125 \mathrm{ft}$. The particle's distance from the origin at this moment is

$$
d=\sqrt{(2.50-0)^{2}+(3.125-0)^{2}}=4.00 \mathrm{ft}
$$

Ans.
Acceleration: Taking the first derivative of the path $y=0.5 x^{2}$, we have $\dot{y}=x \dot{x}$. The second derivative of the path gives

$$
\begin{equation*}
\ddot{y}=\dot{x}^{2}+x \ddot{x} \tag{1}
\end{equation*}
$$

However, $\dot{x}=v_{x}, \ddot{x}=a_{x}$ and $\ddot{y}=a_{y}$. Thus, Eq. (1) becomes

$$
\begin{equation*}
a_{y}=v_{x}^{2}+x a_{x} \tag{2}
\end{equation*}
$$

When $t=1 \mathrm{~s}, v_{x}=5(1)=5 \mathrm{ft} / \mathrm{s} a_{x}=\frac{d v_{x}}{d t}=5 \mathrm{ft} / \mathrm{s}^{2}$, and $x=2.50 \mathrm{ft}$. Then, from Eq. (2)

$$
a_{y}=5^{2}+2.50(5)=37.5 \mathrm{ft} / \mathrm{s}^{2}
$$

Also,

$$
a=\sqrt{a_{x}^{2}+a_{y}^{2}}=\sqrt{5^{2}+37.5^{2}}=37.8 \mathrm{ft} / \mathrm{s}^{2}
$$

Ans.

Ans:

$d=4.00 \mathrm{ft}$
$a=37.8 \mathrm{ft} / \mathrm{s}^{2}$

*12-80.

The motorcycle travels with constant speed v_{0} along the path that, for a short distance, takes the form of a sine curve. Determine the x and y components of its velocity at any instant on the curve.

SOLUTION

$y=c \sin \left(\frac{\pi}{L} x\right)$
$\dot{y}=\frac{\pi}{L} c\left(\cos \frac{\pi}{L} x\right) \dot{x}$
$v_{y}=\frac{\pi}{L} c v_{x}\left(\cos \frac{\pi}{L} x\right)$
$v_{0}^{2}=v_{y}^{2}+v_{x}^{2}$
$v_{0}^{2}=v_{x}^{2}\left[1+\left(\frac{\pi}{L} c\right)^{2} \cos ^{2}\left(\frac{\pi}{L} x\right)\right]$
$v_{x}=v_{0}\left[1+\left(\frac{\pi}{L} c\right)^{2} \cos ^{2}\left(\frac{\pi}{L} x\right)\right]^{-\frac{1}{2}}$
$v_{y}=\frac{v_{0} \pi c}{L}\left(\cos \frac{\pi}{L} x\right)\left[1+\left(\frac{\pi}{L} c\right)^{2} \cos ^{2}\left(\frac{\pi}{L} x\right)\right]^{-\frac{1}{2}}$

Ans:
$v_{x}=v_{0}\left[1+\left(\frac{\pi}{L} c\right)^{2} \cos ^{2}\left(\frac{\pi}{L} x\right)\right]^{-\frac{1}{2}}$
$v_{y}=\frac{v_{0} \pi c}{L}\left(\cos \frac{\pi}{L} x\right)\left[1+\left(\frac{\pi}{L} c\right)^{2} \cos ^{2}\left(\frac{\pi}{L} x\right)\right]^{-\frac{1}{2}}$

12-81.

A particle travels along the circular path from A to B in 1 s . If it takes 3 s for it to go from A to C, determine its average velocity when it goes from B to C.

SOLUTION

Position: The coordinates for points B and C are $\left[30 \sin 45^{\circ}, 30-30 \cos 45^{\circ}\right]$ and [$30 \sin 75^{\circ}, 30-30 \cos 75^{\circ}$]. Thus,

$$
\begin{aligned}
\mathbf{r}_{B} & =\left(30 \sin 45^{\circ}-0\right) \mathbf{i}+\left[\left(30-30 \cos 45^{\circ}\right)-30\right] \mathbf{j} \\
& =\{21.21 \mathbf{i}-21.21 \mathbf{j}\} \mathrm{m} \\
\mathbf{r}_{C} & =\left(30 \sin 75^{\circ}-0\right) \mathbf{i}+\left[\left(30-30 \cos 75^{\circ}\right)-30\right] \mathbf{j} \\
& =\{28.98 \mathbf{i}-7.765 \mathbf{j}\} \mathrm{m}
\end{aligned}
$$

Average Velocity: The displacement from point B to C is $\Delta \mathbf{r}_{B C}=\mathbf{r}_{C}-\mathbf{r}_{B}$ $=(28.98 \mathbf{i}-7.765 \mathbf{j})-(21.21 \mathbf{i}-21.21 \mathbf{j})=\{7.765 \mathbf{i}+13.45 \mathbf{j}\} \mathrm{m}$.

$$
\left(\mathbf{v}_{B C}\right)_{\text {avg }}=\frac{\Delta \mathbf{r}_{B C}}{\Delta t}=\frac{7.765 \mathbf{i}+13.45 \mathbf{j}}{3-1}=\{3.88 \mathbf{i}+6.72 \mathbf{j}\} \mathrm{m} / \mathrm{s}
$$

Ans.

Ans:

$\left(\mathbf{v}_{B C}\right)_{\text {avg }}=\{3.88 \mathbf{i}+6.72 \mathbf{j}\} \mathrm{m} / \mathrm{s}$

12-82.

The roller coaster car travels down the helical path at constant speed such that the parametric equations that define its position are $x=c \sin k t, y=c \cos k t, z=h-b t$, where c, h, and b are constants. Determine the magnitudes of its velocity and acceleration.

SOLUTION

$$
\begin{array}{lll}
x=c \sin k t & \dot{x}=\mathrm{ck} \cos k t & \ddot{x}=-c k^{2} \sin k t \\
y=c \cos k t & \dot{\mathrm{y}}=-\mathrm{ck} \sin k t & \ddot{y}=-c k^{2} \cos k t \\
z=h-b t & \dot{z}=-b & \ddot{z}=0 \\
v=\sqrt{(c k \cos k t)^{2}+(-c k \sin k t)^{2}+(-b)^{2}}=\sqrt{c^{2} k^{2}+b^{2}} \\
a=\sqrt{\left(-c k^{2} \sin k t\right)^{2}+\left(-c k^{2} \cos k t\right)^{2}+0}=c k^{2}
\end{array}
$$

Ans.
Ans.

Ans:
$v=\sqrt{c^{2} k^{2}+b^{2}}$
$a=c k^{2}$

12-83.

Pegs A and B are restricted to move in the elliptical slots due to the motion of the slotted link. If the link moves with a constant speed of $10 \mathrm{~m} / \mathrm{s}$, determine the magnitude of the velocity and acceleration of $\operatorname{peg} A$ when $x=1 \mathrm{~m}$.

SOLUTION

Velocity: The x and y components of the peg's velocity can be related by taking the first time derivative of the path's equation.

$$
\begin{aligned}
& \frac{x^{2}}{4}+y^{2}=1 \\
& \frac{1}{4}(2 x \dot{x})+2 y \dot{y}=0 \\
& \frac{1}{2} x \dot{x}+2 y \dot{y}=0
\end{aligned}
$$

or

$$
\begin{equation*}
\frac{1}{2} x v_{x}+2 y v_{y}=0 \tag{1}
\end{equation*}
$$

At $x=1 \mathrm{~m}$,

$$
\frac{(1)^{2}}{4}+y^{2}=1 \quad y=\frac{\sqrt{3}}{2} \mathrm{~m}
$$

Here, $v_{x}=10 \mathrm{~m} / \mathrm{s}$ and $x=1$. Substituting these values into Eq. (1),

$$
\frac{1}{2}(1)(10)+2\left(\frac{\sqrt{3}}{2}\right) v_{y}=0 \quad v_{y}=-2.887 \mathrm{~m} / \mathrm{s}=2.887 \mathrm{~m} / \mathrm{s} \downarrow
$$

Thus, the magnitude of the peg's velocity is

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{10^{2}+2.887^{2}}=10.4 \mathrm{~m} / \mathrm{s}
$$

Ans.

Acceleration: The x and y components of the peg's acceleration can be related by taking the second time derivative of the path's equation.

$$
\begin{aligned}
& \frac{1}{2}(\dot{x} \dot{x}+x \ddot{x})+2(\dot{y} \dot{y}+y \ddot{y})=0 \\
& \frac{1}{2}\left(\dot{x}^{2}+x \ddot{x}\right)+2\left(\dot{y}^{2}+y \ddot{y}\right)=0
\end{aligned}
$$

or

$$
\begin{equation*}
\frac{1}{2}\left(v_{x}^{2}+x a_{x}\right)+2\left(v_{y}^{2}+y a_{y}\right)=0 \tag{2}
\end{equation*}
$$

Since v_{x} is constant, $a_{x}=0$. When $x=1 \mathrm{~m}, y=\frac{\sqrt{3}}{2} \mathrm{~m}, v_{x}=10 \mathrm{~m} / \mathrm{s}$, and $v_{y}=-2.887 \mathrm{~m} / \mathrm{s}$. Substituting these values into Eq. (2),

$$
\begin{aligned}
& \frac{1}{2}\left(10^{2}+0\right)+2\left[(-2.887)^{2}+\frac{\sqrt{3}}{2} a_{y}\right]=0 \\
& a_{y}=-38.49 \mathrm{~m} / \mathrm{s}^{2}=38.49 \mathrm{~m} / \mathrm{s}^{2} \downarrow
\end{aligned}
$$

Thus, the magnitude of the peg's acceleration is

$$
a=\sqrt{a_{x}^{2}+a_{y}^{2}}=\sqrt{0^{2}+(-38.49)^{2}}=38.5 \mathrm{~m} / \mathrm{s}^{2}
$$

Ans.

Ans:
$v=10.4 \mathrm{~m} / \mathrm{s}$
$a=38.5 \mathrm{~m} / \mathrm{s}^{2}$

* $12-84$.

The van travels over the hill described by $y=\left(-1.5\left(10^{-3}\right) x^{2}+15\right) \mathrm{ft}$. If it has a constant speed of $75 \mathrm{ft} / \mathrm{s}$, determine the x and y components of the van's velocity and acceleration when $x=50 \mathrm{ft}$.

SOLUTION

Velocity: The x and y components of the van's velocity can be related by taking the first time derivative of the path's equation using the chain rule.

$$
\begin{aligned}
& y=-1.5\left(10^{-3}\right) x^{2}+15 \\
& \dot{y}=-3\left(10^{-3}\right) x \dot{x}
\end{aligned}
$$

or

$$
v_{y}=-3\left(10^{-3}\right) x v_{x}
$$

When $x=50 \mathrm{ft}$,

$$
\begin{equation*}
v_{y}=-3\left(10^{-3}\right)(50) v_{x}=-0.15 v_{x} \tag{1}
\end{equation*}
$$

The magnitude of the van's velocity is

$$
\begin{equation*}
v=\sqrt{v_{x}^{2}+v_{y}^{2}} \tag{2}
\end{equation*}
$$

Substituting $v=75 \mathrm{ft} / \mathrm{s}$ and Eq. (1) into Eq. (2),

$$
\begin{aligned}
& 75=\sqrt{v_{x}^{2}+\left(-0.15 v_{x}\right)^{2}} \\
& v_{x}=74.2 \mathrm{ft} / \mathrm{s} \leftarrow
\end{aligned}
$$

Ans.

Substituting the result of ν_{x} into Eq. (1), we obtain

$$
v_{y}=-0.15(-74.17)=11.12 \mathrm{ft} / \mathrm{s}=11.1 \mathrm{ft} / \mathrm{s} \uparrow
$$

Ans.
Acceleration: The x and y components of the van's acceleration can be related by taking the second time derivative of the path's equation using the chain rule.

$$
\ddot{y}=-3\left(10^{-3}\right)(\dot{x} \dot{x}+x \ddot{x})
$$

or

$$
a_{y}=-3\left(10^{-3}\right)\left(v_{x}^{2}+x a_{x}\right)
$$

When $x=50 \mathrm{ft}, v_{x}=-74.17 \mathrm{ft} / \mathrm{s}$. Thus,

$$
\begin{align*}
& a_{y}=-3\left(10^{-3}\right)\left[(-74.17)^{2}+50 a_{x}\right] \\
& a_{y}=-\left(16.504+0.15 a_{x}\right) \tag{3}
\end{align*}
$$

Since the van travels with a constant speed along the path, its acceleration along the tangent of the path is equal to zero. Here, the angle that the tangent makes with the horizontal at $x=50 \mathrm{ft}$ is $\theta=\left.\tan ^{-1}\left(\frac{d y}{d x}\right)\right|_{x=50 \mathrm{ft}}=\left.\tan ^{-1}\left[-3\left(10^{-3}\right) x\right]\right|_{x=50 \mathrm{ft}}=\tan ^{-1}(-0.15)=-8.531^{\circ}$.
Thus, from the diagram shown in Fig. a,

$$
a_{x} \cos 8.531^{\circ}-a_{y} \sin 8.531^{\circ}=0
$$

Solving Eqs. (3) and (4) yields

$$
\begin{aligned}
& a_{x}=-2.42 \mathrm{ft} / \mathrm{s}=2.42 \mathrm{ft} / \mathrm{s}^{2} \leftarrow \\
& a_{y}=-16.1 \mathrm{ft} / \mathrm{s}=16.1 \mathrm{ft} / \mathrm{s}^{2} \downarrow
\end{aligned}
$$

Ans.
Ans.

Ans:
$v_{x}=74.2 \mathrm{ft} / \mathrm{s} \leftarrow$
$v_{y}=11.1 \mathrm{ft} / \mathrm{s} \uparrow$
$a_{x}=2.42 \mathrm{ft} / \mathrm{s}^{2} \leftarrow$
$a_{y}=16.1 \mathrm{ft} / \mathrm{s}^{2} \downarrow$

12-85.

The flight path of the helicopter as it takes off from A is defined by the parametric equations $x=\left(2 t^{2}\right) \mathrm{m}$ and $y=\left(0.04 t^{3}\right) \mathrm{m}$, where t is the time in seconds. Determine the distance the helicopter is from point A and the magnitudes of its velocity and acceleration when $t=10 \mathrm{~s}$.

SOLUTION

$x=2 t^{2} \quad y=0.04 t^{3}$
At $t=10 \mathrm{~s}, \quad x=200 \mathrm{~m} \quad y=40 \mathrm{~m}$
$d=\sqrt{(200)^{2}+(40)^{2}}=204 \mathrm{~m}$
$\nu_{x}=\frac{d x}{d t}=4 t$
$a_{x}=\frac{d \nu_{x}}{d t}=4$
$v_{y}=\frac{d y}{d t}=0.12 \mathrm{t}^{2}$
$a_{y}=\frac{d \nu_{y}}{d t}=0.24 t$

At $t=10 \mathrm{~s}$,
$\nu=\sqrt{(40)^{2}+(12)^{2}}=41.8 \mathrm{~m} / \mathrm{s}$
$a=\sqrt{(4)^{2}+(2.4)^{2}}=4.66 \mathrm{~m} / \mathrm{s}^{2}$

Ans.

Ans.
Ans.

Ans:
$d=204 \mathrm{~m}$
$v=41.8 \mathrm{~m} / \mathrm{s}$
$a=4.66 \mathrm{~m} / \mathrm{s}^{2}$

12-86.

Determine the minimum initial velocity v_{0} and the corresponding angle θ_{0} at which the ball must be kicked in order for it to just cross over the 3-m high fence.

SOLUTION

Coordinate System: The $x-y$ coordinate system will be set so that its origin coincides with the ball's initial position.
\boldsymbol{x}-Motion: Here, $\left(v_{0}\right)_{x}=v_{0} \cos \theta, x_{0}=0$, and $x=6 \mathrm{~m}$. Thus,

$$
\begin{align*}
(\xrightarrow{+}) \quad x & =x_{0}+\left(v_{0}\right) x^{t} \\
6 & =0+\left(v_{0} \cos \theta\right) t \\
t & =\frac{6}{v_{0} \cos \theta} \tag{1}
\end{align*}
$$

\boldsymbol{y}-Motion: Here, $\left(v_{0}\right)_{x}=v_{0} \sin \theta, a_{y}=-g=-9.81 \mathrm{~m} / \mathrm{s}^{2}$, and $y_{0}=0$. Thus,

$$
\begin{align*}
(+\uparrow) \quad y & =y_{0}+\left(v_{0}\right)_{y} t+\frac{1}{2} a_{y} t^{2} \\
3 & =0+v_{0}(\sin \theta) t+\frac{1}{2}(-9.81) t^{2} \\
3 & =v_{0}(\sin \theta) t-4.905 t^{2} \tag{2}
\end{align*}
$$

Substituting Eq. (1) into Eq. (2) yields

$$
\begin{equation*}
v_{0}=\sqrt{\frac{58.86}{\sin 2 \theta-\cos ^{2} \theta}} \tag{3}
\end{equation*}
$$

From Eq. (3), we notice that v_{0} is minimum when $f(\theta)=\sin 2 \theta-\cos ^{2} \theta$ is maximum. This requires $\frac{d f(\theta)}{d \theta}=0$

$$
\begin{aligned}
& \frac{d f(\theta)}{d \theta}=2 \cos 2 \theta+\sin 2 \theta=0 \\
& \tan 2 \theta=-2 \\
& 2 \theta=116.57^{\circ} \\
& \theta=58.28^{\circ}=58.3^{\circ}
\end{aligned}
$$

Ans.
Substituting the result of θ into Eq. (2), we have

$$
\left(v_{0}\right)_{\min }=\sqrt{\frac{58.86}{\sin 116.57^{\circ}-\cos ^{2} 58.28^{\circ}}}=9.76 \mathrm{~m} / \mathrm{s}
$$

Ans.

> Ans:
> $\theta=58.3^{\circ}$
> $\left(v_{0}\right)_{\min }=9.76 \mathrm{~m} / \mathrm{s}$

12-87.

The catapult is used to launch a ball such that it strikes the wall of the building at the maximum height of its trajectory. If it takes 1.5 s to travel from A to B, determine the velocity \mathbf{v}_{A} at which it was launched, the angle of release θ, and the height h

SOLUTION

$$
\begin{aligned}
(\xrightarrow{+}) s & =v_{0} t \\
18 & =v_{A} \cos \theta(1.5) \\
(+\uparrow) v^{2} & =v_{0}^{2}+2 a_{c}\left(s-s_{0}\right) \\
0 & =\left(v_{A} \sin \theta\right)^{2}+2(-32.2)(h-3.5) \\
(+\uparrow) v & =v_{0}+a_{c} t \\
0 & =v_{A} \sin \theta-32.2(1.5)
\end{aligned}
$$

(1)
(2)

Ans.
Ans.
Ans.

Ans:
$\theta=76.0^{\circ}$
$v_{A}=49.8 \mathrm{ft} / \mathrm{s}$
$h=39.7 \mathrm{ft}$

*12-88.

Neglecting the size of the ball, determine the magnitude v_{A} of the basketball's initial velocity and its velocity when it passes through the basket.

SOLUTION

Coordinate System. The origin of the $x-y$ coordinate system will be set to coinside with point A as shown in Fig. a

Horizontal Motion. Here $\left(v_{A}\right)_{x}=v_{A} \cos 30^{\circ} \rightarrow,\left(s_{A}\right)_{x}=0$ and $\left(s_{B}\right)_{x}=10 \mathrm{~m} \rightarrow$.

$$
\begin{aligned}
(\stackrel{+}{\rightarrow})\left(s_{B}\right)_{x} & =\left(s_{A}\right)_{x}+\left(v_{A}\right)_{x} t \\
10 & =0+v_{A} \cos 30^{\circ} t \\
t & =\frac{10}{v_{A} \cos 30^{\circ}}
\end{aligned}
$$

(1)

$$
\begin{equation*}
(\xrightarrow{+}) \quad\left(v_{B}\right)_{x}=\left(v_{A}\right)_{x}=v_{A} \cos 30^{\circ} \tag{2}
\end{equation*}
$$

Vertical Motion. Here, $\left(v_{A}\right)_{y}=v_{A} \sin 30^{\circ} \uparrow,\left(s_{A}\right)_{y}=0,\left(s_{B}\right)_{y}=3-2=1 \mathrm{~m} \uparrow$ and $a_{y}=9.81 \mathrm{~m} / \mathrm{s}^{2} \downarrow$

$$
\begin{gather*}
(+\uparrow)\left(s_{B}\right)_{y}=\left(s_{A}\right)_{y}+\left(v_{A}\right)_{y} t+\frac{1}{2} a_{y} t^{2} \\
1=0+v_{A} \sin 30^{\circ} t+\frac{1}{2}(-9.81) t^{2} \\
4.905 t^{2}-0.5 v_{A} t+1=0 \tag{3}
\end{gather*}
$$

Also

$$
\begin{align*}
(+\uparrow)\left(v_{B}\right)_{y} & =\left(v_{A}\right)_{y}+a_{y} t \\
\left(v_{B}\right)_{y} & =v_{A} \sin 30^{\circ}+(-9.81) t \\
\left(v_{B}\right)_{y} & =0.5 v_{A}-9.81 t \tag{4}
\end{align*}
$$

Solving Eq. (1) and (3)

$$
\begin{aligned}
& v_{A}=11.705 \mathrm{~m} / \mathrm{s}=11.7 \mathrm{~m} / \mathrm{s} \\
& t=0.9865 \mathrm{~s}
\end{aligned}
$$

Ans.

Substitute these results into Eq. (2) and (4)

$$
\begin{aligned}
& \left(v_{B}\right)_{x}=11.705 \cos 30^{\circ}=10.14 \mathrm{~m} / \mathrm{s} \rightarrow \\
& \left(v_{B}\right)_{y}=0.5(11.705)-9.81(0.9865)=-3.825 \mathrm{~m} / \mathrm{s}=3.825 \mathrm{~m} / \mathrm{s} \downarrow
\end{aligned}
$$

Thus, the magnitude of \mathbf{v}_{B} is

$$
v_{B}=\sqrt{\left(v_{B}\right)_{x}^{2}+\left(v_{B}\right)_{y}^{2}}=\sqrt{10.14^{2}+3.825^{2}}=10.83 \mathrm{~m} / \mathrm{s}=10.8 \mathrm{~m} / \mathrm{s}
$$

Ans.
And its direction is defined by

$$
\theta_{B}=\tan ^{-1}\left[\frac{\left(v_{B}\right)_{y}}{\left(v_{B}\right)_{x}}\right]=\tan ^{-1}\left(\frac{3.825}{10.14}\right)=20.67^{\circ}=20.7^{\circ}
$$

Ans.

> Ans:
> $v_{A}=11.7 \mathrm{~m} / \mathrm{s}$
> $v_{B}=10.8 \mathrm{~m} / \mathrm{s}$
> $\theta=20.7^{\circ}$

12-89.

The girl at A can throw a ball at $v_{A}=10 \mathrm{~m} / \mathrm{s}$. Calculate the maximum possible range $R=R_{\text {max }}$ and the associated angle θ at which it should be thrown. Assume the ball is caught at B at the same elevation from which it is thrown.

SOLUTION

$$
\begin{aligned}
& (\stackrel{+}{\rightarrow}) s=s_{0}+v_{0} t \\
& \quad R=0+(10 \cos \theta) t \\
& (+\uparrow) v=v_{0}+a_{c} t \\
& -10 \sin \theta=10 \sin \theta-9.81 t \\
& t=\frac{20}{9.81} \sin \theta
\end{aligned}
$$

Thus, $\quad R=\frac{200}{9.81} \sin \theta \cos \theta$

$$
R=\frac{100}{9.81} \sin 2 \theta
$$

Require,
$\frac{d R}{d \theta}=0$
$\frac{100}{9.81} \cos 2 \theta(2)=0$
$\cos 2 \theta=0$
$\theta=45^{\circ}$
$R=\frac{100}{9.81}\left(\sin 90^{\circ}\right)=10.2 \mathrm{~m}$

(1)

Ans.

Ans.

> Ans:
> $R_{\text {max }}=10.2 \mathrm{~m}$
> $\theta=45^{\circ}$

12-90.

Show that the girl at A can throw the ball to the boy at B by launching it at equal angles measured up or down from a 45° inclination. If $v_{A}=10 \mathrm{~m} / \mathrm{s}$, determine the range R if this value is 15°, i.e., $\theta_{1}=45^{\circ}-15^{\circ}=30^{\circ}$ and $\theta_{2}=45^{\circ}+$ $15^{\circ}=60^{\circ}$. Assume the ball is caught at the same elevation from which it is thrown.

SOLUTION

$$
\begin{align*}
& (\xrightarrow{+}) s=s_{0}+v_{0} t \\
& R=0+(10 \cos \theta) t \\
& (+\uparrow) v=v_{0}+a_{c} t \\
& -10 \sin \theta=10 \sin \theta-9.81 t \\
& t=\frac{20}{9.81} \sin \theta \\
& \text { Thus, } \quad R=\frac{200}{9.81} \sin \theta \cos \theta \tag{1}
\end{align*}
$$

$R=\frac{100}{9.81} \sin 2 \theta$
Since the function $y=\sin 2 \theta$ is symmetric with respect to $\theta=45^{\circ}$ as indicated, Eq. (1) will be satisfied if $\left|\phi_{1}\right|=\left|\phi_{2}\right|$

Choosing $\phi=15^{\circ}$ or $\theta_{1}=45^{\circ}-15^{\circ}=30^{\circ}$ and $\theta_{2}=45^{\circ}+15^{\circ}=60^{\circ}, \quad$ and substituting into Eq. (1) yields
$R=8.83 \mathrm{~m}$

Ans.

12-91.

The ball at A is kicked with a speed $v_{A}=80 \mathrm{ft} / \mathrm{s}$ and at an angle $\theta_{A}=30^{\circ}$. Determine the point $(x,-y)$ where it strikes the ground. Assume the ground has the shape of a parabola as shown.

SOLUTION

$\left(v_{A}\right)_{x}=80 \cos 30^{\circ}=69.28 \mathrm{ft} / \mathrm{s}$
$\left(v_{A}\right)_{y}=80 \sin 30^{\circ}=40 \mathrm{ft} / \mathrm{s}$
$(\xrightarrow{+})_{s}=s_{0}+v_{0} t$
$x=0+69.28 t$

$$
\begin{aligned}
(+\uparrow) s & =s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2} \\
-y & =0+40 t+\frac{1}{2}(-32.2) t^{2} \\
y & =-0.04 x^{2}
\end{aligned}
$$

(1)
(2)

From Eqs. (1) and (2):
$-y=0.5774 x-0.003354 x^{2}$
$0.04 x^{2}=0.5774 x-0.003354 x^{2}$
$0.04335 x^{2}=0.5774 x$
$x=13.3 \mathrm{ft}$
Thus
$y=-0.04(13.3)^{2}=-7.09 \mathrm{ft}$

Ans.

Ans.

Ans:

*12-92.

The ball at A is kicked such that $\theta_{A}=30^{\circ}$. If it strikes the ground at B having coordinates $x=15 \mathrm{ft}, y=-9 \mathrm{ft}$, determine the speed at which it is kicked and the speed at which it strikes the ground.

SOLUTION

$$
\begin{aligned}
& (\xrightarrow{+}) s=s_{0}+v_{0} t \\
& \quad 15=0+v_{A} \cos 30^{\circ} t \\
& (+\uparrow) s=s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2} \\
& \quad-9=0+v_{A} \sin 30^{\circ} t+\frac{1}{2}(-32.2) t^{2} \\
& v_{A}=16.5 \mathrm{ft} / \mathrm{s} \\
& t=1.047 \mathrm{~s}
\end{aligned} \quad \begin{aligned}
& \binom{+}{\hline}\left(v_{B}\right)_{x}=16.54 \cos 30^{\circ}=14.32 \mathrm{ft} / \mathrm{s} \\
& (+\uparrow) v=v_{0}+a_{c} t \\
& \left(v_{B}\right)_{y}=16.54 \sin 30^{\circ}+(-32.2)(1.047) \\
& \quad=-25.45 \mathrm{ft} / \mathrm{s} \\
& v_{B}=\sqrt{(14.32)^{2}+(-25.45)^{2}}=29.2 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

Ans.

Ans.

Ans:
$v_{A}=16.5 \mathrm{ft} / \mathrm{s}$
$t=1.047 \mathrm{~s}$
$v_{B}=29.2 \mathrm{ft} / \mathrm{s}$

12-93.

A golf ball is struck with a velocity of $80 \mathrm{ft} / \mathrm{s}$ as shown.
Determine the distance d to where it will land.

SOLUTION

Solving

$t=3.568 \mathrm{~s}$
$d=166 \mathrm{ft}$

$$
\begin{aligned}
& (\xrightarrow{+}) s=s_{0}+v_{0} t \\
& d \cos 10^{\circ}=0+80 \cos 55^{\circ} t \\
& (+\uparrow) s=s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2} \\
& d \sin 10^{\circ}=0+80 \sin 55^{\circ} t-\frac{1}{2}(32.2)\left(t^{2}\right)
\end{aligned}
$$

Ans.

Ans:
$d=166 \mathrm{ft}$

12-94.

A golf ball is struck with a velocity of $80 \mathrm{ft} / \mathrm{s}$ as shown. Determine the speed at which it strikes the ground at B and the time of flight from A to B.

SOLUTION

$\left(v_{A}\right)_{x}=80 \cos 55^{\circ}=44.886$
$\left(v_{A}\right)_{y}=80 \sin 55^{\circ}=65.532$
$(\xrightarrow{+}) s=s_{0}+v_{0} t$
$d \cos 10^{\circ}=0+45.886 t$
$(+\uparrow) s=s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2}$
$d \sin 10^{\circ}=0+65.532(t)+\frac{1}{2}(-32.2)\left(t^{2}\right)$
$d=166 \mathrm{ft}$
$t=3.568=3.57 \mathrm{~s}$
$\left(v_{B}\right)_{x}=\left(v_{A}\right)_{x}=45.886$
$(+\uparrow) v=v_{0}+a_{c} t$
$\left(v_{B}\right)_{y}=65.532-32.2(3.568)$
$\left(v_{B}\right)_{y}=-49.357$
$v_{B}=\sqrt{(45.886)^{2}+(-49.357)^{2}}$
$v_{B}=67.4 \mathrm{ft} / \mathrm{s}$

Ans.

Ans.

Ans:
$t=3.57 \mathrm{~s}$
$v_{B}=67.4 \mathrm{ft} / \mathrm{s}$

12-95.

The basketball passed through the hoop even though it barely cleared the hands of the player B who attempted to block it. Neglecting the size of the ball, determine the magnitude v_{A} of its initial velocity and the height h of the ball when it passes over player B.

SOLUTION

$$
\begin{aligned}
&\left(\begin{array}{l}
s
\end{array}=s_{0}+v_{0} t\right. \\
& 30=0+v_{A} \cos 30^{\circ} t_{A C} \\
&(+\uparrow) \quad s=s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2} \\
& 10=7+v_{A} \sin 30^{\circ} t_{A C}-\frac{1}{2}(32.2)\left(t_{A C}^{2}\right)
\end{aligned}
$$

Solving

$v_{A}=36.73=36.7 \mathrm{ft} / \mathrm{s}$
$t_{A C}=0.943 \mathrm{~s}$

$$
25=0+36.73 \cos 30^{\circ} t_{A B}
$$

$(+\uparrow)$

$$
\begin{aligned}
& s=s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2} \\
& h=7+36.73 \sin 30^{\circ} t_{A B}-\frac{1}{2}(32.2)\left(t_{A B}^{2}\right)
\end{aligned}
$$

Solving

$t_{A B}=0.786 \mathrm{~s}$
$h=11.5 \mathrm{ft}$

Ans.

Ans.

Ans:
$v_{A}=36.7 \mathrm{ft} / \mathrm{s}$
$h=11.5 \mathrm{ft}$

[^0]: Ans:
 $s_{T}=980 \mathrm{~m}$

